Skip to main content
Log in

Quantum Signature without Classical Private Key

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Generally, in a quantum signature protocol, the signature is produced with the signatory’s classical private key, which is a secret bit string. In most of the signature schemes, it is assumed that the classical private keys are secretly kept. However, in practice, the protection of the classical private key may be vulnerable to various special attacks such as side channel attack, power analysis and cool boot attack. The classical private key may also be disclosed due to the mismanagement of its owner and distributor. Once the signatory’s private key is disclosed, the quantum signature system can be broken. In this paper, a novel quantum signature scheme without classical private key is proposed. In this protocol, the signatory and the trusted third party share the Bell states. The signatory signs a message with the Bell states rather than classical private key. The quantum signature is verified with the Bell states as well. Therefore, it is impossible for any quantum adversary to forge a particle by getting some information about the classical private key. The security of our scheme fully relies on the quantum property of the physical particle. Our scheme can resist against various attacks such as forgery attack, disavowal attack, inter-resending attack and measurement attack. Our signing protocol has the better qubit efficiency than the similar ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diffie, W., Hellman, M.: New direction in cryptography. IEEE Trans. Inf. Theory. 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  2. Rivest, R.L., Shamir, A., Adelman, L.: A method for obtain digital signatures and public-key cryptosystem. Commun. ACM. 21(2), 120–126 (1978)

    Article  MATH  Google Scholar 

  3. Rabin, M.O.: Digital signature and public-key functions as intractable as factorization. In: MIT Laboratory for computer Science, Technical Report, MIT/LCS/TR212 (1979)

    Google Scholar 

  4. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Tran. Inf. Theor. 31(4), 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  5. Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Rastegari, P., Berenjkoub, M., Dakhilalian, M., Susilo, W.: Universal designated verifier signature scheme with non-delegatability in the standard model. Inf. Sci. 479, 321–334 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  7. Rastegari, P., Susilo, W., Dakhilalian, M.: Certificateless designated verifier signature revisited: achieving a concrete scheme in the standard model. Int. J. Inf. Secur. 18(5), 619–665 (2019)

    Article  Google Scholar 

  8. Gottesman D., Chuang I. Quantum digital signatures. arXiv: quant-ph/0105032 (2001)

    Google Scholar 

  9. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A. 65(4), 042312 (2002)

    Article  ADS  Google Scholar 

  10. Luo, M.X., Chen, X.B., Yun, D., Yang, Y.X.: Quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 51, 2135–2142 (2012)

    Article  MATH  Google Scholar 

  11. Su, Q., Li, W.M.: Improved quantum signature scheme with weak arbitrator. Int. J. Theor. Phys. 52(9), 3343–3352 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Yang, Y.G., Zhou, Z., Teng, Y.W., et al.: Arbitrated quantum signature with an untrusted arbitrator. Eur. Phys. J. D. 61, 773–778 (2011)

    Article  ADS  Google Scholar 

  13. Arrazola, J.M., Wallden, P., Andersson, E.: Multiparty quantum signature schemes. Quant. Inf. Comput. 6, 0435 (2016)

    MathSciNet  Google Scholar 

  14. Cai, X.Q., Wang, T.Y., Wei, C.Y., et al.: Cryptanalysis of multiparty quantum digital signatures. Quantum Inf. Process. 18(8), 252 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  15. He, Q., Xin, X., Yang, Q.: Security analysis and improvement of a quantum multi-signature protocol. Quantum Inf. Process. 20(1), 26 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yang, Y.G., Lei, H., Liu, Z.C., Zhou, Y.H., Shi, W.M.: Arbitrated quantum signature scheme based on cluster states. Quantum Inf. Process. 15, 2487–2497 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Xin, X., He, Q., Wang, Z., et al.: Efficient arbitrated quantum signature scheme without entangled states. Modern Phys. Lett. A. 34(21), 1950166-1–1950166-9 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Xin, X., He, Q., Wang, Z., Yang, Q., Li, F.: Security analysis and improvement of an arbitrated quantum signature scheme. Optik. 189, 23–31 (2019)

    Article  ADS  Google Scholar 

  19. Zheng, T., Chang, Y., Yan, L., Zhang, S.B.: Semi-quantum proxy signature scheme with quantum walk-based teleportation. Int. J. Theor. Phys. 59, 3145–3155 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wang, T.Y., Wei, Z.L.: Analysis of forgery attack on one-time proxy signature and the improvement. Int. J. Theor. Phys. 55(2), 743–745 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Liang, X.Q., Wu, Y.L., Zhang, Y.H., et al.: Quantum multi-proxy blind signature scheme based on four-qubit cluster states. Int. J. Theor. Phys. 58(1), 31–39 (2019)

    Article  MATH  Google Scholar 

  22. Cai, X.Q., Wang, X.X., Wang, T.Y.: Fair and optimistic contract signing based on quantum cryptography. Int. J. Theor. Phys. 58, 3677–3683 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  23. Qin, H., Tang, W.K.S., Tso, R.: Efficient quantum multi-proxy signature. Quantum Inf. Process. 18(2), 53 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Xin, X., Wang, Z., Yang, Q., et al.: Quantum designated verifier signature based on Bell states. Quantum Inf. Process. 19(79), 53 (2020)

    ADS  MathSciNet  Google Scholar 

  25. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Y., Su, Z., Zhang, F., et al.: Quantum algorithm for solving hyper elliptic curve discrete logarithm problem. Quantum Inf. Process. 19, 62 (2020)

    Article  ADS  Google Scholar 

  27. Qin, H.: Public-key quantum signature based on phase shift operation. Modern Phys. Lett. B. 2050084 (2020)

  28. Kaushik, A., Ajit, K.D., Debasish, J.: A novel approach for simple quantum digital signature based on asymmetric quantum cryptography. Int. J. Appl. Innov. Eng. Manag. 2(6), 13–17 (2013)

    Google Scholar 

  29. Chen, F.L., Liu, W.F., Chen, S.G., Wang, Z.H.: Public-key quantum digital signature scheme with one-time pad private-key. Quantum Inf. Process. 17(10), 1–14 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  30. Xin, X., Wang, Z., He, Q., Yang, Q., Li, F.: New public-key quantum signature with quantum one-way function. Int. J. Theor. Phys. 58, 3282–3294 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Xin, X., Yang, Q., Li, F.: Quantum public-key signature scheme based on asymmetric quantum encryption with trapdoor information. Quantum Inf. Process. 19(8), 233 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  32. Xin, X., Ding, L., Li, C., Sang, Y., Yang, Q., Li, F.: Quantum public-key designated verifier signature. Quantum Inf. Process. 21(1), 33 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  33. Yin H. L, Yao F., Zeng B. C. Practical quantum digital signature. Phys. Rev. A, 93, 032316 (2016)

  34. An, X.B., Zhang, H., Zhang, C.M., et al.: Practical quantum digital signature with a gigahertz BB84 quantum key distribution system. Opt. Lett. 44(1), 139–142 (2019)

    Article  ADS  Google Scholar 

  35. Ding, H.J., Chen, J.J., Ji, L., et al.: 280-km experimental demonstration of a quantum digital signature with one decoy state. Opt. Lett. 45(7), 1711–1714 (2020)

    Article  ADS  Google Scholar 

  36. Zhang, C.H., Zhou, X.Y., Zhang, C.M., et al.: Twin-field quantum digital signatures. Opt. Lett. 46(15), 3757–3760 (2021)

    Article  ADS  Google Scholar 

  37. Bellare, M., Keelveedhi, S., Ristenpart, T.: DepLESS: server-aided encryption for deduplicated storage. In: Proceedings of the 22nd USENIX Security Symposium, Washington, DC, USA. Berkeley: USENIX Association, pp. 179–194 (2013)

    Google Scholar 

  38. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Advances in Cryptology—CRYPTO’ 99, pp. 388–397(1999). Springer, LNCS, Berlin/Heidelberg, Germany (1666)

    Google Scholar 

  39. Quisquater, J., Samyde, D.: Electromagnetic analysis (EMA): Measures and counter-measures for smart cards. In: Smart Card Programming and Security. E-smart 2001, vol. 2140, pp. 200–210. Springer, Berlin/Heidelberg, Germany, LNCS (2001)

    Chapter  MATH  Google Scholar 

  40. Halderman J.A Schoen S. D, Heninger N., et al. Lest we remember: cold-boot attacks on encryption keys. Commun. ACM, 52(5), 91–98 (2009)

    Article  Google Scholar 

  41. Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous hardcore bits and cryptography against memory attacks. In: Proceedings of the TCC’09. Springer: Berlin/Heidelberg, Germany, LNCS 5444, pp. 474–495 (2009)

    Google Scholar 

  42. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys. Rev. Lett. 87(16), 167902 (2001)

    Article  ADS  Google Scholar 

  43. Nikolopoulos, G.M.: Applications of single-qubit rotations in quantum public-key cryptography. Phys. Rev. A. 77(3), 032348 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  45. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. Theor. Comput. Sci. 560, 7–11 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  46. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  47. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14(9), 3483–3498 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Scientific Research Project of Colleges and Universities in Henan Province (CN) (No.22A413010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangjun Xin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, M., Xin, X. & Chen, D. Quantum Signature without Classical Private Key. Int J Theor Phys 61, 19 (2022). https://doi.org/10.1007/s10773-022-05025-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05025-w

Keywords

Navigation