Skip to main content
Log in

Relationship Between Entanglement and Coherence in Some Two-Qubit States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum coherence and quantum entanglement are two of the most important quantum properties, while the relationship between them hasn’t been revealed completely, even though revealing their relationship is conducive to the development of quantum theory. In this work, we investigate their relationship in two-qubit pure states and Bell diagonal states, and we propose a relationship between coherence and entanglement. That is the sum of concurrence, l1 norm coherence of each subsystems and compensate factor equals to the intuitive l1 norm of coherence of the quantum system. Furthermore, we also investigate the relationship between Bell nonlocality and coherence. Then we check the correctness of our theories in some typical open systems by assuming one of the qubits passes through the noisy environment. The relationship we proposed here may deepen our understanding about quantum world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: . Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: . Math. Proc. Cambridge Philos. Soc. 31(4), 555–563 (1935)

    Article  ADS  Google Scholar 

  3. Schrödinger, E.: . Math. Proc. Cambridge Philos. Soc. 32(3), 446–452 (1936)

    Article  ADS  Google Scholar 

  4. Pawlowski, M.: . Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  5. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: . Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: . Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. Werner, R.F.: . J. Phys. A: Math. Gen. 34, 7081 (2001)

    Article  ADS  Google Scholar 

  8. Pirandola, S., Eisert, J., Weedbrook, C., Furusawa, A., Braunstein, S.L.: . Nat. Photon. 9, 641 (2015)

    Article  ADS  Google Scholar 

  9. Xia, Y., Song, J., Song, H.S.: . J. Phys. B-AT. Mol. Opt. 40 (18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  10. Wellens, T., Kuś, M.: . Phys. Rev. A. 64, 052302 (2001)

    Article  ADS  Google Scholar 

  11. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: . Phys. Rev. A. 54, 3824 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: . Phys. Rev. A. 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wootters, W.K.: . Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  14. Bell, J.S.: . Physics 1, 195 (1964)

    Article  Google Scholar 

  15. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: . Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  16. Horodecki, R., Horodecki, P., Horodecki, M.: . Phys. Lett. A. 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mandel, L., Wolf, E.: . Rev. Mod. Phys. 37, 231 (1965)

    Article  ADS  Google Scholar 

  18. Baumgratz, T., Cramer, M., Plenio, M.B.: . Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  19. Streltsov, A., Adesso, G., Plenio, M.B.: . Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  Google Scholar 

  20. Hillery, M.: . Phys. Rev. A. 93, 012111 (2016)

    Article  ADS  Google Scholar 

  21. Shi, H.L., Liu, S.Y., Wang, X.H., Yang, W.L., Yang, Z.Y., Fan, H.: . Phys. Rev. A. 95, 032307 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Marvian, I., Spekkens, R.W.: . Phys. Rev. A. 94, 052324 (2016)

    Article  ADS  Google Scholar 

  23. Girolami, D.: . Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  24. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: . Phys. Rev. Lett. 116, 150502 (2016)

    Article  ADS  Google Scholar 

  25. Bu, K., Kumar, A., Wu, J.: arXiv:1603.06322 (2016)

  26. Mondal, D., Mukhopadhyay, C.: arXiv:1510.07556 (2015)

  27. Pozzobom, M.B., Basso, M.L.W., Maziero, J.: . Phys. Rev. A. 103, 022212 (2021)

    Article  ADS  Google Scholar 

  28. Young, J.D., Auyuanet, A.: . Quantum Inf. Process. 19, 398 (2020)

    Article  ADS  Google Scholar 

  29. Horst, B., Bartkiewicz, K., Miranowicz, A.: . Phys. Rev. A. 87, 042108 (2013)

    Article  ADS  Google Scholar 

  30. Hashemi Rafsanjani, S.M., Huber, M., Broadbent, C.J., Eberly, J.H.: . Phys. Rev. A. 86, 062303 (2012)

    Article  ADS  Google Scholar 

  31. Werner, R.F.: . Phys. Rev. A. 40, 4277 (1989)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 12175001 and Grant No. 61601002), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and Natural Science Foundation of Education Department of Anhui Province (Grant No. KJ2016SD49).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, F., Wang, D. & Ye, L. Relationship Between Entanglement and Coherence in Some Two-Qubit States. Int J Theor Phys 61, 10 (2022). https://doi.org/10.1007/s10773-022-05014-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05014-z

Keywords

Navigation