Skip to main content
Log in

Influence of Fluctuations in the Occupation of Higher Energy Levels on the Read-Out Process of Majorana Qubits

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Motivated by recent proposals of a Majorana box qubit (MBQ) and the read-out of its quantum state, we reconsider the MBQ-quantum dot system and investigate the influence of noise on the transport properties and the measurement process. Specifically, in the frame of a quantum master equation approach, we show that the energy level fluctuations of higher energy state in the MBQ lead to dephasing and reduce the effective tunneling amplitude between the MBQ and the dots, thus influencing the transport properties and characteristic dynamics. Remarkably in a certain range of parameters, the visibility of the interference current is even enhanced by the fluctuations. The results of our analysis are expected to be useful for future work on Majorana qubits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kitaev, A.Y.: Unpaired Majorana fermions in quantum wires. Phys. Usp. 44, 131 (2001)

    Article  ADS  Google Scholar 

  2. Lutchyn, R.M., Sau, J.D., Das Sarma, S.: Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev Lett. 105, 077001 (2010)

    Article  ADS  Google Scholar 

  3. Oreg, Y., Refael, G., von Oppen, F.: Helical liquids and Majorana bound states in quantum wires. Phys. Rev Lett. 105, 177002 (2010)

    Article  ADS  Google Scholar 

  4. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Alicea, J.: New directions in the pursuit of Majorana fermions in solid state systems. Rep. Prog. Phys. 75, 076501 (2012)

    Article  ADS  Google Scholar 

  6. Leijnse, M., Flensberg, K.: Introduction to topological superconductivity and Majorana fermions Semicond. Sci. Technol. 27, 124003 (2012)

    ADS  Google Scholar 

  7. Beenakker, C.W.J.: Search for Majorana fermions in superconductors. Annu. Rev. Con. Mat. Phys. 4, 113 (2013)

    Article  Google Scholar 

  8. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana fermions in in hybrid superconductor-semiconductor nanowire devices. Science 336, 1003 (2012)

    Article  ADS  Google Scholar 

  9. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al-InAs nanowire topological superconductor as a signature of Majorana fermions. Nat Phys. 8, 887 (2012)

    Article  Google Scholar 

  10. Albrecht, S.M., Higginbotham, A.P., Madsen, M., Kuemmeth, F., Jespersen, T.S., Nyg, J., Krogstrup, P., Marcus, C.M.: Exponential protection of zero modes in Majorana islands. Nature 531, 206 (2016)

    Article  ADS  Google Scholar 

  11. Deng, M., Vaitiekė nas, S., Hansen, E., Danon, J., Leijnse, M., Flensberg, K., Nygård, J., Krogstrup, P., Marcus, C.: Majorana bound state in a coupled quantum-dot hybrid-nanowire system. Science 354, 1557 (2016)

    Article  ADS  Google Scholar 

  12. Suominen, H.J., Kjaergaard, M., Hamilton, A.R., Shabani, J., Palmstrøm, C.J., Marcus, C.M., Nichele, F.: Scalable Majorana Devices. Phys. Rev. Lett. 119, 176805 (2017)

    Article  ADS  Google Scholar 

  13. Chen, J., Woods, B., Yu, P., Hocevar, M., Car, D., Plissard, S., Bakkers, E., Stanescu, T., Frolov, S.: Ubiquitous non-Majorana Zero-Bias Conductance Peaks in Nanowire Devices. Phys. Rev. Lett. 123, 107703 (2019)

    Article  ADS  Google Scholar 

  14. Prada, E., San-Jose, P., de Moor, M.W.A., Geresdi, A., Lee, E.J.H., Klinovaja, J., Loss, D., Nygård, J., Aguado, R., Kouwenhoven, L.P.: From Andreev to Majorana Bound States in Hybrid Superconductor-Semiconductor Nanowires. Nat. Rev. Phys. 2, 575 (2020)

    Article  Google Scholar 

  15. Liu, C. -X., Sau, J.D., Stanescu, T.D., Das Sarma, S.: Andreev bound states versus majorana bound states in quantum dot-nanowire-superconductor hybrid structures: Trivial versus topological zero-bias conductance peaks. Phys. Rev. B 96, 075161 (2017)

    Article  ADS  Google Scholar 

  16. Moore, C., Stanescu, T.D., Tewari, S.: Two-terminal charge tunneling: Disentangling majorana zero modes from partially separated andreev bound states in semiconductor-superconductor heterostructures. Phys. Rev. B 97, 165302 (2018)

    Article  ADS  Google Scholar 

  17. Hell, M., Flensberg, K., Leijnse, M.: Distinguishing Majorana bound states from localized Andreev bound states by interferometry. Phys. Rev. B 97, 161401 (2018)

    Article  ADS  Google Scholar 

  18. Liu, C. -X., Sau, J.D., Das Sarma, S.: Distinguishing topological Majorana bound states from trivial Andreev bound states: Proposed tests through differential tunneling conductance spectroscopy. Phys. Rev. B 97, 214502 (2018)

    Article  ADS  Google Scholar 

  19. Haim, A., Berg, E., von Oppen, F., Oreg, Y.: Signatures of majorana zero modes in Spin-Resolved current correlations. Phys. Rev. Lett. 114, 166406 (2015)

    Article  ADS  Google Scholar 

  20. Read, N., Green, D.: Paired states of fermions in two dimensions with breaking of parity and time-reversal symmetries and the fractional quantum Hall effect. Phys. Rev. B 61, 10267 (2000)

    Article  ADS  Google Scholar 

  21. Ivanov, D.A.: Nov-abelian Statistics of Half-Quantum Vortices in p-Wave Superconductors. Phys. Rev. Lett. 86, 268 (2001)

    Article  ADS  Google Scholar 

  22. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Das Sarma, S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Stanescu, T.D., Das Sarma, S.: Building topological quantum circuits: Majorana nanowire junctions. Phys. Rev. B 97, 045410 (2018)

    Article  ADS  Google Scholar 

  24. Aasen, D., Hell, M., Mishmash, R.V., Higginbotham, A., Danon, J., Leijnse, M., Jespersen, T.S., Folk, J.A., Marcus, C.M., Flensberg, K., Alicea, J.: Milestones toward Majorana-based quantum computing. Phys. Rev. X 6, 031016 (2016)

    Google Scholar 

  25. Plugge, S., Landau, L.A., Sela, E., Altland, A., Flensberg, K., Egger, R.: Roadmap to Majorana surface codes. Phys. Rev. B 94, 174514 (2016)

    Article  ADS  Google Scholar 

  26. Plugge, S., Rasmussen, A., Egger, R., Flensberg, K.: Majorana box qubits. New J. Phys. 19, 012001 (2017)

    Article  ADS  Google Scholar 

  27. Karzig, T., Knapp, C., Lutchyn, R.M., Bonderson, P., Hastings, M.B., Nayak, C., Alicea, J., Flensberg, K., Plugge, S., Oreg, Y., Marcus, C.M., Freedman, M.H.: Scalable designs for quasiparticle-poisoning-protected topological quantum computation with Majorana zero modes. Phys. Rev. B 95, 235305 (2017)

    Article  ADS  Google Scholar 

  28. Munk, M.I.K., Schulenborg, J., Egger, R., Flensberg, K.: Parity-to-charge conversion in Majorana qubit readout. Phys. Rev. R 2, 033254 (2020)

    Article  Google Scholar 

  29. Steiner, J.F., von Oppen, F.: Readout of Majorana qubits. Phys. Rev. R 2, 033255 (2020)

    Article  Google Scholar 

  30. Qin, L., Li, X.Q., Shnirman, A., Schön, G.: Transport signatures of a Majorana qubit and read-out-induced dephasing. New J. Phys. 21, 043027 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  31. Lai, H. -L., Yang, P. -Y., Huang, Y. -W., Zhang, W. -M.: Exact master equation and non-Markovian decoherence dynamics of Majorana zero modes under gate-induced charge fluctuations. Phys. Rev B 97, 054508 (2018)

    Article  ADS  Google Scholar 

  32. Goldstein, G., Chamon, C.: Decay rates for topological memories encoded with Majorana fermions. Phys. Rev. B 84, 205109 (2011)

    Article  ADS  Google Scholar 

  33. Budich, J.C., Walter, S., Trauzettel, B.: Failure of protection of Majorana based qubits against decoherence. Phys. Rev. B 85, 121405 (2012)

    Article  ADS  Google Scholar 

  34. Cheng, M., Lutchyn, R.M., Das Sarma, S.: Topological protection of Majorana qubits. Phys. Rev. B 85, 165124 (2012)

    Article  ADS  Google Scholar 

  35. Schmidt, M.J., Rainis, D., Loss, D.: Decoherence of Majorana qubits by noisy gates. Phys. Rev. B 86, 085414 (2012)

    Article  ADS  Google Scholar 

  36. Zhou, K., Zhang, C., Qin, L., Li, X.Q.: Double-dot interferometer for quantum measurement of Majorana qubits and stabilizers. Chin. Phys. B 30(1), 010301 (2021)

    Article  ADS  Google Scholar 

  37. Liu, D.E., Baranger, H.U.: Detecting a Majoranafermion zero mode using a quantum dot. Phys. Rev. B 84(R), 201308 (2011)

    Article  ADS  Google Scholar 

  38. van Heck, B., Hassler, F., Akhmerov, A.R., Beenakker, C.W.J.: Coulomb stability of the 4π-periodic Josephson effect of Majorana fermions. Phys. Rev. B 84(R), 180502 (2011)

    Article  Google Scholar 

  39. Fu, L.: Electron teleportation via Majorana bound states in a mesoscopic superconductor. Phys. Rev. Lett. 104, 056402 (2010)

    Article  ADS  Google Scholar 

  40. Li, X.Q., Luo, J.Y., Yang, Y.G., Cui, P., Yan, Y.J.: Quantum master-equation approach to quantum transport through mesoscopic system. Phys. Rev. B 71, 205304 (2005)

    Article  ADS  Google Scholar 

  41. Luo, J.Y., Li, X.Q., Yan, Y.J.: Calculation of the current noise spectrum in mesoscopic transport: A quantum master equation approach. Phys. Rev. B 76, 085325 (2007)

    Article  ADS  Google Scholar 

  42. Hu, X.N., Li, X.Q.: Quantum measurement of an electron in a disordered potential: delocalization versus measurement voltages. Phys. Rev. B 73, 035320 (2006)

    Article  ADS  Google Scholar 

  43. Karlewski, C., Marthaler, M.: Time-local master equation connecting the Born and Markov approximations. Phys. Rev. B 90, 104302 (2014)

    Article  ADS  Google Scholar 

  44. Jin, J.S., Marthaler, M., Schön, G.: Electroluminescence and multiphoton effects in a resonator driven by a tunnel junction. Phys. Rev. B 91, 085421 (2015)

    Article  ADS  Google Scholar 

  45. Karlewski, C., Heimes, A., Schön, G.: Lasing and transport in a multilevel double quantum dot system coupled to a microwave oscillator. Phys. Rev. B 93, 045314 (2016)

    Article  ADS  Google Scholar 

  46. Knapp, C., Karzig, T., Lutchyn, R., Nayak, C.: Dephasing of Majorana-based qubits. Phys. Rev. B 97, 125404 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

Xinqi Li and Gerd Schön are gratefully acknowledged for helpful discussion. This work was supported by the National Natural Science Foundation of China (Grant No. 61905174).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lupei Qin.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L. Influence of Fluctuations in the Occupation of Higher Energy Levels on the Read-Out Process of Majorana Qubits. Int J Theor Phys 61, 11 (2022). https://doi.org/10.1007/s10773-022-05007-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05007-y

Keywords

Navigation