Skip to main content
Log in

Dynamical Suppression of Decoherence and Protection of Quantum Coherence Between Superconducting Flux Qubits in 1/f Noise Environments by Bang-Bang Pulses

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate how to protect the quantum coherence and quantum Fisher information for two superconducting flux qubits each locally interacting with its own finite-temperature environment (heat bath) with 1/f spectral density by making use of bang-bang pulses. It is shown that the quantum coherence and quantum Fisher information can be improved by applying a train of bang-bang pulses and protected more effectively with shorter interval pulses. In addition, we also explore the influence of bang-bang pulses on the transfer of quantum information between two flux qubits and heat baths by a witness of trace distance. It is found that the bang-bang pulses can suppress the effect of heat baths and slow down the exchange of the quantum information flows between two flux qubits and heat baths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Pirandola, S.: Quantum discord as a resource for quantum cryptography. Sci. Rep. 4, 6956 (2014)

    Article  ADS  Google Scholar 

  2. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  3. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photonics 96, 222–229 (2011)

    Article  ADS  Google Scholar 

  4. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  5. Rana, S., Parashar, P., Lewenstein, M.: Trace distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  7. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Pires, D.P., Céleri, L.C., Soarespinto, D.O.: Geometric lower bound for quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  9. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  10. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  11. Chitambar, E., Hsieh, M.H.: Relating the Resource Theories of Entanglement and Quantum Coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  12. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting Coherence to Quantum Correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  13. Radhakrishnan, C., Ermakov, I., Byrnes, T.: Quantum coherence of planar spin models with Dzyaloshinsky-Moriya interaction. Phys. Rev. A 96, 012341 (2017)

    Article  ADS  Google Scholar 

  14. Chen, J.Q., Xu, J.B.: Multipartite entanglement, quantum coherence, and quantum criticality in triangular and Sierpiski fractal lattices. Phys. Rev. E 97, 062134 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  15. Meng, Q., Ren, Z.Z., Zhang, X.: Dynamics of quantum coherence and quantum phase transitions in XY spin systems. Phys. Rev. A 98, 012303 (2018)

    Article  ADS  Google Scholar 

  16. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  17. Lostaglio, M., Korzekwa, K., Milne, A.: Markovian evolution of quantum coherence under symmetric dynamics. Phys. Rev. A 96, 032109 (2017)

    Article  ADS  Google Scholar 

  18. Wu, W., Xu, J.B.: Quantum coherence of spin-boson model at finite temperature. Ann. Phys. 48, 377 (2017)

    Google Scholar 

  19. Shaoying Yin, S.Y., Song, J., Xu, X.X., Zhang, Y.J., Liu, S.T.: Quantum coherence dynamics of three-qubit states in XY spin-chain environment. Quantum Inf. Process. 17, 296 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Yadin, B., Bogaert, P., Susa, C.E., Girolami, D.: Coherence and quantum correlations measure sensitivity to dephasing channels. Phys. Rev. A 99, 012329 (2019)

    Article  ADS  Google Scholar 

  21. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.K., Manc̆al, T., Cheng, Y.C., Blankenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  22. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  23. Rybak, L., Amaran, S., Levin, L., Tomza, M., Moszynski, R., Kosloff, R., Koch, C.P., Amitay, Z.: Generating molecular rovibrational coherence by two-photon femtosecond photoassociation of thermally hot atoms phys. Rev. Lett. 107, 273001 (2011)

    Article  ADS  Google Scholar 

  24. Fisher, R.A.: Theory of statistical estimation. Proc. Cambridge Philos. Soc. 22, 700 (1925)

    Article  ADS  MATH  Google Scholar 

  25. Holevo, A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland (1982)

  26. Helstrom, C.W.: Quantum Detection and Estimation Theory. Academic, New York (1976)

    MATH  Google Scholar 

  27. Yao, Y., Ge, L., Xiao, X., Wang, X., Sun, C.P.: Multiple phase estimation for arbitrary pure states under white noise. Phys. Rev. A 90, 062113 (2014)

    Article  ADS  Google Scholar 

  28. Zheng, Q., Li, G., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  29. Xiao, X., Yao, Y., Zhong, W.J., Li, Y.L., Xie, Y.M.: Enhancing teleportation of quantum Fisher information by partial measurements. Phys. Rev. A 93, 012307 (2016)

    Article  ADS  Google Scholar 

  30. Ren, Y.K., Tang, L.M., Zeng, H.S.: Protection of quantum Fisher information in entangled states via classical driving. Quantum Inf. Process 15, 5011–5021 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Liu, Z., Liang, Q., Fei, P.: Enhancing quantum coherence and quantum Fisher information by quantum partially collapsing measurements. Quantum Inf. Process 16, 109 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Watanabe, Y., Sagawa, T., Ueda, M.: Optimal measurement on noisy quantum systems. Phys. Rev. Lett. 104, 020401 (2010)

    Article  ADS  Google Scholar 

  33. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum Metrology in Non-Markovian Environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  34. Tan, Q.S., Huang, Y.X., Yin, X.L., Kuang, L.M., Wang, X.G.: . Phys. Rev. A 87, 032102 (2013)

    Article  ADS  Google Scholar 

  35. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non- Markovian dissipative two-sate system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  36. Li, N., Luo, S.L.: Entanglement detection via quantum Fisher information. Phys. Rev. A 88, 014301 (2013)

    Article  ADS  Google Scholar 

  37. Wang, T.L., Wu, L.N., Yang, W., Jin, G.R., Lambert, N., Nori, F.: Quantum Fisher information as a signature of the superradiant quantum phase transition. J. Phys. 16, 063039 (2014)

    MathSciNet  Google Scholar 

  38. Lu, X.M., Wang, X.G., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  39. Monroe, C.: Quantum information processing with atoms and photons. Nature 416, 238–246 (2002)

    Article  ADS  Google Scholar 

  40. Chang, D.E., Sørensen, A.S., Hemmer, P.R., Lukin, M.D.: Quantum optics with surface plasmons. Phys. Rev. Lett. 97, 053002 (2006)

    Article  ADS  Google Scholar 

  41. Van Loo, A.F., Fedorov, A., Lalumière, K., Sanders, B.C., Blais, A., Wallraff, A.: Photon-mediated interactions between distant artificial atoms. Science 342, 1494–1496 (2013)

    Article  ADS  Google Scholar 

  42. Viola, L., Lloyd, S.: Dynamical suppression of decoherence in two-state quantum systems. Phys. Rev. A 58, 2733 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  43. Yang, W., Liu, R.B.: Universality of Uhrig dynamical decoupling for suppressing qubit pure dephasing and relaxation. Phys. Rev. Lett. 101, 180403 (2008)

    Article  ADS  Google Scholar 

  44. Xu, H.S., Xu, J.B.: Enhancement of quantum correlations for the system of cavity QED by applying bang-bang pulses. Europhys. Lett. 95, 60003 (2011)

    Article  ADS  Google Scholar 

  45. Damodarakurup, S., Lucamarini, M., Di Giuseppe, G., Vitali, D., Tombesi, P.: Experimental Inhibition of Decoherence on Flying Qubits via “Bang-Bang” Control. Phys. Rev. Lett. 103, 040502 (2009)

    Article  ADS  Google Scholar 

  46. Bertaina, S., Vezin, H., De Raedt, H., Chiorescu, I.: Experimental protection of quantum coherence by using a phase-tunable image drive. Sci. Rep. 10, 21642 (2020)

    Article  ADS  Google Scholar 

  47. Miao, K.C., Blanton, J.P., Anderson, C.P., Bourassa, A., Crook, A.L., Wolfowicz, G., Abe, H., Ohshima, T., Awschalom, D.D.: Universal coherence protection in a solid-state spin qubit. Sci 369, 1493–1497 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  48. Orlando, T.P., Mooij, J.E., Tian, L., van der Wal, C.H., Levitov, L.S., Lloyd, S., Mazo, J.J.: Superconducting persistent-current qubit. Phys. Rev. B 60, 15398 (1999)

    Article  ADS  Google Scholar 

  49. Liu, Y.X., Wei, L.F., Tsai, J.S., Nori, F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  50. Nakamura, Y., Pashkin, Yu.A., Yamamoto, T., Tsai, J.S.: Charge echo in a cooper-pair box. Phys. Rev. Lett. 88, 047901 (2002)

    Article  ADS  Google Scholar 

  51. Shiokawa, K., Lidar, D.A.: Dynamical decoupling using slow pulses: Efficient suppression of 1/f noise. Phys. Rev. A 69, 030302 (2004)

    Article  ADS  Google Scholar 

  52. Omelyanchouk, A.N., Shevchenko, S.N., Greenberg, Y.S., Astafiev, O., Il’ichev, E.: Quantum behavior of a flux qubit coupled to a resonator. Low Temp. Phys. 36, 893 (2010)

    Article  ADS  Google Scholar 

  53. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  54. Pairs, M.G.A.: Quantum estimatioin for quantum technology. Int. J. Quant. Inf. 7, 125 (2009)

    Article  Google Scholar 

  55. Zong, W., Sun, Z., Ma, J., Wang, X.G., Nori, F.: Fisher information under decoherence in Bloch representation. Phys. Rev. A 87, 022337 (2013)

    Article  ADS  Google Scholar 

  56. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  57. Laine, E.M., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  58. Laine, E.M., Piilo, J., Breuer, H.P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)

    Article  ADS  Google Scholar 

  59. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011)

    Article  ADS  Google Scholar 

  60. Tang, J.S., Li, C.F., Li, Y.L., Zou, X.B., Guo, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

  61. Ruskai, M.B.: Beyond strong subadditivity? Improved bounds on the contraction of generalized relative entropy. Rev. Math. Phys. 06, 1147 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant No.11364006), the Guizhou Provincial Science and Technology Foundation (Grant No.[2017]7343), the Key laboratory of low dimensional condensed matter physics of higher educational institution of Guizhou province(Grant No.[2016]002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Liang He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CY., Wu, CY., Xiao, YJ. et al. Dynamical Suppression of Decoherence and Protection of Quantum Coherence Between Superconducting Flux Qubits in 1/f Noise Environments by Bang-Bang Pulses. Int J Theor Phys 61, 9 (2022). https://doi.org/10.1007/s10773-022-05004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05004-1

Keywords

Navigation