Skip to main content
Log in

Gain Enhanced Second Harmonic Generation in Coupled Resonators System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Optical resonator is an excellent platform with the property of high optical field localization which has found many applications in classical nonlinear optics, microwave and quantum photonics. Here, in this work, we study the second harmonic nonlinear effect with coupled optical resonators system. We first present a Parity-Time symmetric dimer system consists the active-passive coupled microresonators. One passive resonator is made of material with second-order nonlinearity been considered under the pumping. By theoretically solved the eigenvalues of the system, we observe the exceptional points of the system under different coupling conditions and different loss rates. In addition, the efficiencies of second-harmonic effect are studied. Especially under the exceptional points, the efficiency of second harmonic generation would approach the maximal value, which are 6.04 × 1022 and 6.05 × 1022, respectively, and increases with the coupling g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wang, R.P., Dumitrescu, M.M.: Semiclassical theory of emission spectra of optical microcavities. Phys. Rev. A 60, 2467–2473 (1999). https://doi.org/10.1103/PhysRevA.60.2467

    Article  ADS  Google Scholar 

  2. Liu, X. -F., Wang, T. -J., Gao, Y. -P., Cao, C., Wang, C.: Chiral microresonator assisted by Rydberg-atom ensembles. Phys. Rev. A 98, 033824 (2018). https://doi.org/10.1103/PhysRevA.98.033824

    Article  ADS  Google Scholar 

  3. Chang, R.K., Ducuing, J., Bloembergen, N.: Dispersion of the optical nonlinearity in semiconductors. Phys. Rev. Lett. 15, 415–418 (1965). https://doi.org/10.1103/PhysRevLett.15.415

    Article  ADS  Google Scholar 

  4. Ridolfo, A., del Valle, E., Hartmann, M.J.: Photon correlations from ultrastrong optical nonlinearities. Phys. Rev. A 88, 063812 (2013). https://doi.org/10.1103/PhysRevA.88.063812

    Article  ADS  Google Scholar 

  5. Xia, K., Nori, F., Xiao, M.: Cavity-free optical isolators and circulators using a chiral cross-kerr nonlinearity. Phys. Rev. Lett. 121, 203602 (2018). https://doi.org/10.1103/PhysRevLett.121.203602

    Article  ADS  Google Scholar 

  6. Zhang, J., Peng, B., Özdemir, Ş.K, Liu, Y.-X., Jing, H., Lü, X.-Y., Liu, Y.-L., Yang, L., Nori, F.: Giant nonlinearity via breaking parity-time symmetry: A route to low-threshold phonon diodes. Phys. Rev. B 92, 115407 (2015). https://doi.org/10.1103/PhysRevB.92.115407

    Article  ADS  Google Scholar 

  7. Guo, X., Zou, C. -L., Tang, H.X.: Second-harmonic generation in aluminum nitride microrings with 2500%/w conversion efficiency. Optica 3(10), 1126–1131 (2016). https://doi.org/10.1364/OPTICA.3.001126

    Article  ADS  Google Scholar 

  8. Lin, Z., Liang, X., Loncar, M., Johnson, S., Rodriguez, A.: Cavity-enhanced second harmonic generation via nonlinear-overlap optimization. Optica, 3. https://doi.org/10.1364/OPTICA.3.000233 (2015)

  9. Franken, P.A., Hill, A.E., Peters, C.W., Weinreich, G.: Generation of optical harmonics. Phys. Rev. Lett. 7, 118–119 (1961). https://doi.org/10.1103/PhysRevLett.7.118

    Article  ADS  Google Scholar 

  10. Shoji, I., Kondo, T., Kitamoto, A., Shirane, M., Ito, R.: Absolute scale of second-order nonlinear-optical coefficients. J. Opt. Soc. Am. B 14(9), 2268–2294 (1997). https://doi.org/10.1364/JOSAB.14.002268

    Article  ADS  Google Scholar 

  11. Jankowski, M., Marandi, A., Phillips, C.R., Hamerly, R., Ingold, K.A., Byer, R.L., Fejer, M.M.: Temporal simultons in optical parametric oscillators. Phys. Rev. Lett. 120, 053904 (2018). https://doi.org/10.1103/PhysRevLett.120.053904

    Article  ADS  Google Scholar 

  12. Choy, M.M., Byer, R.L.: Accurate second-order susceptibility measurements of visible and infrared nonlinear crystals. Phys. Rev. B 14, 1693–1706 (1976). https://doi.org/10.1103/PhysRevB.14.1693

    Article  ADS  Google Scholar 

  13. Singh, N., Hudson, D.D., Yu, Y., Grillet, C., Jackson, S.D., Casas-Bedoya, A., Read, A., Atanackovic, P., Duvall, S.G., Palomba, S., et al: Midinfrared supercontinuum generation from 2 to 6 μ m in a silicon nanowire. Optica 2 (9), 797–802 (2015). https://doi.org/10.1364/OPTICA.2.000797

    Article  ADS  Google Scholar 

  14. Hickstein, D.D., Jung, H., Carlson, D.R., Lind, A., Coddington, I., Srinivasan, K., Ycas, G.G., Cole, D.C., Kowligy, A., Fredrick, C., Droste, S., Lamb, E.S., Newbury, N.R., Tang, H.X., Diddams, S.A., Papp, S.B.: Ultrabroadband supercontinuum generation and frequency-comb stabilization using on-chip waveguides with both cubic and quadratic nonlinearities. Phys. Rev. Applied 8, 014025 (2017). https://doi.org/10.1103/PhysRevApplied.8.014025

    Article  ADS  Google Scholar 

  15. Grosse, N.B., Bowen, W.P., McKenzie, K., Lam, P.K.: Harmonic entanglement with second-order nonlinearity. Phys. Rev. Lett. 96, 063601 (2006). https://doi.org/10.1103/PhysRevLett.96.063601

    Article  ADS  Google Scholar 

  16. Zhou, Y.H., Shen, H.Z., Yi, X.X.: Unconventional photon blockade with second-order nonlinearity. Phys. Rev. A 92, 023838 (2015). https://doi.org/10.1103/PhysRevA.92.023838

    Article  ADS  Google Scholar 

  17. Li, J., Yu, R., Qu, Y., Ding, C., Zhang, D., Wu, Y.: Second-harmonic generation with ultralow-power pump thresholds in a dimer of two active-passive cavities. Phys. Rev. A 96, 013815 (2017). https://doi.org/10.1103/PhysRevA.96.013815

    Article  ADS  Google Scholar 

  18. Lu, J., Surya, J.B., Liu, X., Xu, Y., Tang, H.X.: Octave-spanning supercontinuum generation in nanoscale lithium niobate waveguides. Opt. Lett. 44(6), 1492–1495 (2019). https://doi.org/10.1364/OL.44.001492

    Article  ADS  Google Scholar 

  19. Ilchenko, V.S., Savchenkov, A.A., Matsko, A.B., Maleki, L.: Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004). https://doi.org/10.1103/PhysRevLett.92.043903

    Article  ADS  Google Scholar 

  20. Fürst, J.U., Strekalov, D.V., Elser, D., Lassen, M., Andersen, U.L., Marquardt, C., Leuchs, G.: Naturally phase-matched second-harmonic generation in a whispering-gallery-mode resonator. Phys. Rev. Lett. 104, 153901 (2010). https://doi.org/10.1103/PhysRevLett.104.153901

    Article  ADS  Google Scholar 

  21. Jung, H., Xiong, C., Fong, K.Y., Zhang, X., Tang, H.X.: Optical frequency comb generation from aluminum nitride microring resonator. Opt. Lett. 38(15), 2810–2813 (2013). https://doi.org/10.1364/OL.38.002810

    Article  ADS  Google Scholar 

  22. Meng, L.L., Xiong, X.Y.Z., Xia, T., Liu, Q.S., Jiang, L.J., Sha, W.E.I., Chew, W.C.: Second-harmonic generation of structured light by transition-metal dichalcogenide metasurfaces. Phys. Rev. A 102, 043508 (2020). https://doi.org/10.1103/PhysRevA.102.043508

    Article  ADS  Google Scholar 

  23. Weismann, M., Panoiu, N.C.: Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers. Phys. Rev. B 94, 035435 (2016). https://doi.org/10.1103/PhysRevB.94.035435

    Article  ADS  Google Scholar 

  24. Okugawa, R., Yokoyama, T.: Topological exceptional surfaces in non-hermitian systems with parity-time and parity-particle-hole symmetries. Phys. Rev. B 99, 041202 (2019). https://doi.org/10.1103/PhysRevB.99.041202

    Article  ADS  Google Scholar 

  25. Galda, A., Vinokur, V.M.: Parity-time symmetry breaking in spin chains. Phys. Rev. B 97, 201411 (2018). https://doi.org/10.1103/PhysRevB.97.201411

    Article  ADS  Google Scholar 

  26. Yang, B., Luo, X., Hu, Q., Yu, X.: Exact control of parity-time symmetry in periodically modulated nonlinear optical couplers. Phys. Rev. A 94, 043828 (2016). https://doi.org/10.1103/PhysRevA.94.043828

    Article  ADS  Google Scholar 

  27. El-Ganainy, R., Makris, K.G., Khajavikhan, M., Musslimani, Z.H., Rotter, S., Christodoulides, D.N.: Non-Hermitian physics and PT symmetry. Nat. Phys. 14(1), 11–19 (2018). https://doi.org/10.1038/nphys4323

    Article  Google Scholar 

  28. Peng, B., Özdemir, S.̧K., Lei, F., Monifi, F., Gianfreda, M., Long, G.L., Fan, S., Nori, F., Bender, C.M., Yang, L.: Parity–time-symmetric whispering-gallery microcavities. Nat. Phys. 10(5), 394–398 (2014)

    Article  Google Scholar 

  29. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: Beam dynamics in \(\mathcal {P}\mathcal {T}\) symmetric optical lattices. Phys. Rev. Lett. 103904, 100 (2008). https://doi.org/10.1103/PhysRevLett.100.103904

    Google Scholar 

  30. Zhang, F., Feng, Y., Chen, X., Ge, L., Wan, W.: Synthetic anti-pt symmetry in a single microcavity. Phys. Rev. Lett. 124, 053901 (2020). https://doi.org/10.1103/PhysRevLett.124.053901

    Article  ADS  Google Scholar 

  31. Dembowski, C., Dietz, B., Gräf, H. -D., Harney, H.L., Heine, A., Heiss, W.D., Richter, A.: Encircling an exceptional point. Phys. Rev. E 69, 056216 (2004). https://doi.org/10.1103/PhysRevE.69.056216

    Article  ADS  Google Scholar 

  32. Goldzak, T., Mailybaev, A.A., Moiseyev, N.: Light stops at exceptional points. Phys. Rev. Lett. 120, 013901 (2018). https://doi.org/10.1103/PhysRevLett.120.013901

    Article  ADS  Google Scholar 

  33. Guo, A., Salamo, G.J., Duchesne, D., Morandotti, R., Volatier-Ravat, M., Aimez, V., Siviloglou, G.A., Christodoulides, D.N.: Observation of \(\mathcal {P}\mathcal {T}\)-symmetry breaking in complex optical potentials. Phys. Rev. Lett. 103, 093902 (2009). https://doi.org/10.1103/PhysRevLett.103.093902

    Article  ADS  Google Scholar 

  34. Nixon, S., Ge, L., Yang, J.: Stability analysis for solitons in \(\mathcal {{{PT}}}\)-symmetric optical lattices. Phys. Rev. A 85, 023822 (2012). https://doi.org/10.1103/PhysRevA.85.023822

    Article  ADS  Google Scholar 

  35. Heiss, W.D., Radu, S.: Quantum chaos, degeneracies, and exceptional points. Phys. Rev. E 52, 4762–4767 (1995). https://doi.org/10.1103/PhysRevE.52.4762

    Article  ADS  Google Scholar 

  36. Zhang, Z., Wang, Y. -P., Wang, X.: \(\mathcal {P}\mathcal {T}\)-symmetry-breaking-enhanced cavity optomechanical magnetometry. Phys. Rev. A 102, 023512 (2020). https://doi.org/10.1103/PhysRevA.102.023512

    Article  ADS  Google Scholar 

  37. Xu, W. -L., Liu, X. -F., Sun, Y., Gao, Y. -P., Wang, T. -J., Wang, C.: Magnon-induced chaos in an optical \(\mathcal {{{PT}}}\)-symmetric resonator. Phys. Rev. E 101, 012205 (2020). https://doi.org/10.1103/PhysRevE.101.012205

    Article  ADS  Google Scholar 

  38. Ramezani, H., Schindler, J., Ellis, F.M., Günther, U., Kottos, T.: Bypassing the bandwidth theorem with \(\mathcal {{{PT}}}\) symmetry. Phys. Rev. A 85, 062122 (2012). https://doi.org/10.1103/PhysRevA.85.062122

    Article  ADS  Google Scholar 

  39. Xu, W. -L., Gao, Y. -P., Cao, C., Wang, T. -J., Wang, C.: Nanoscatterer-mediated frequency combs in cavity optomagnonics. Phys. Rev. A 102, 043519 (2020). https://doi.org/10.1103/PhysRevA.102.043519

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China through Grants No. 62071448, and the Fundamental Research Funds for the Central Universities (BNU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, XX., Wang, TJ. & Wang, C. Gain Enhanced Second Harmonic Generation in Coupled Resonators System. Int J Theor Phys 61, 3 (2022). https://doi.org/10.1007/s10773-022-04977-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04977-3

Keywords

Navigation