Skip to main content
Log in

Quantum Classifier with Entangled Subgraph States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the development of quantum computation theory, some researchers further apply it to improve the efficiency of classical machine learning algorithms. Based on physical graph state, an efficient quantum version of classifier is proposed in this paper. Different from existing classical methods, realizing the proposed scheme is an entangling-subgraphs process of physical system to build the classifier by using the graph states. Resort to the efficiency of graph state, the quantum algorithm is more efficient to big data than the classical ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, IS: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

  2. Cirac, J.I., Zoller, P.: A scalable quantum computer with ions in an array of microtraps. Nature 404, 579–581 (2000)

    Article  ADS  Google Scholar 

  3. Sasaki, M., Carlini, A.: Quantum learning and universal quantum matching. Phys. Rev. A 66, 022303 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hentschel, A., Sanders, B.C.: Machine learning for precise quantum measurement. Phys. Rev. Lett. 104, 063603 (2010)

  5. Pudenz, K. L., Lidar, D. A.: Quantum adiabatic machine learning Quantum. Quant. Inf. Proc. 12, 2027 (2013)

    Article  MathSciNet  Google Scholar 

  6. Rebentrost, P., Mohseni, M. , Lloyd, S.: Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 130503 (2014)

    Article  ADS  Google Scholar 

  7. Schutzhold, R.: Pattern recognition on a quantum computer. Phys. Rev. A 67, 062311 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  8. Aïmeur, E., Brassard, G., Gambs, S.: Machine learning in a quantum world. In Advances in Artificial Intelligence, pp. 431–442. Springer (2006)

  9. Wittek, P.: Quantum Machine Learning; What Quantum Computing Means to Data Mining. Academic Press, Boston (2014)

    MATH  Google Scholar 

  10. Schuld, M., Sinayskiy, I., Petruccione, F.: An introduction to quantum machine learning. Contemp. Phys. 56, 172–185 (2015)

    Article  ADS  Google Scholar 

  11. Biamonte, J., et al.: Quantum machine learning. Nature 549, 195. EP (2017)

  12. Schuld, M., Petruccione, F.: Supervised learning with quantum computers. Springer, Cham (2018)

  13. Türkpençe, D., Akncı, T.Ç., Serhat, Ş.: A steady state quantum classifier. Phys. Lett. A 383(13), 1410–1418 (2019)

    Article  ADS  Google Scholar 

  14. Schuld, M., Killoran, N.: Quantum machine learning in feature Hilbert spaces. Phys. Rev. Lett. 122, 040504 (2019)

    Article  ADS  Google Scholar 

  15. Blank, C., Park, D. K., Rhee, J. K. K., et al.: Quantum classifier with tailored quantum kernel. npj Quantum. Inf. 6, 41 (2020)

    Article  ADS  Google Scholar 

  16. Dür, W., Aschauer, H., Briegel, H. J.: Multiparticle entanglement purification for graph states. Phys. Rev. Lett. 91, 107903 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  17. Raussendorf, R., Browne, D. E., Briegel, H. J.: Measurement-based quantum computation using cluster states. Phys. Rev. A 68, 022312 (2003)

    Article  ADS  Google Scholar 

  18. Briegel, H. J., Raussendorf, R.: A One-Way quantum computer. Phys. Rev. Lett. 86, 910 (2001)

    Article  ADS  Google Scholar 

  19. Hein, M., Eisert, J., Briegel, H. J.: . Phys. Rev. A 69, 062311 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  20. Aschauer, H., Dür, W., Briegel, H. J.: . Phys. Rev. A 71, 012319 (2005)

    Article  ADS  Google Scholar 

  21. Hu, D., et al.: . Phys. Rev. A. 78, 012306 (2008)

    Article  ADS  Google Scholar 

  22. Manh Nguyen, D., Kim, S.: Int. J. Mod. Phys. B 33(24), 1950274 (2019)

Download references

Acknowledgments

This work is supported by Natural Science Foundation of China (No.62072207), Natural Science Foundation of Shanghai (No.19ZR1420000), Henan Key Laboratory of Network Cryptography Technology (No.LNCT2020-A05), Open Foundation of Network and Data Security Key Laboratory of Sichuan Province (University of Electronic Science and Technology of China) (No. NDS2021-1) and Program for Innovative Research Team of Huizhou University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyuan Luo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Natural Science Foundation of China (No.62072207), Natural Science Foundation of Shanghai (No.19ZR1420000), Henan Key Laboratory of Network Cryptography Technology (No.LNCT2020-A05), Open Foundation of Network and Data Security Key Laboratory of Sichuan Province (University of Electronic Science and Technology of China) (No. NDS2021-1) and Program for Innovative Research Team of Huizhou University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Meng, Y. & Luo, Y. Quantum Classifier with Entangled Subgraph States. Int J Theor Phys 60, 3529–3538 (2021). https://doi.org/10.1007/s10773-021-04922-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04922-w

Keywords

Navigation