Skip to main content
Log in

Improving the Teleportation Cost in Distributed Quantum Circuits Based on Commuting of Gates

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Distributed quantum system is a well-known method to overcome the problems of designing and manufacturing large quantum systems to achieve higher processing power in the world of quantum processing. In distributed quantum computing, a number of limited-capacity quantum circuits communicating with each other through communication channels operate as a large quantum circuit. The most essential step in designing a distributed quantum system is to optimize the communication between the components to reduce the overhead cost of communications. In this study, based on the commuting of quantum gates, an efficient method is proposed to reduce the number of teleportations required to perform distributed quantum circuits (DQCs). The results obtained from the evaluation of our method on benchmark circuits indicate an impressive decrease in the number of teleportations and a significant reduction in the execution time compared to the present methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hassan, S., Asghar, M., et al.: .. In: 2010 Second International Conference on Communication Software and Networks, pp 559–561. IEEE (2010)

  2. Grover, L.K.: . Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  3. MacQuarrie, E.R., Simon, C., Simmons, S., Maine, E.: . Nat. Rev. Phys. 2(11), 596 (2020)

    Article  Google Scholar 

  4. Shor, P.: . Conference Publications, Spain (1997)

    Google Scholar 

  5. Montanaro, A.: . npj Quant. Inform. 2(1), 1 (2016)

    Google Scholar 

  6. Krenn, M., Malik, M., Scheidl, T., Ursin, R., Zeilinger, A.: . Optics Our Time 18, 455 (2016)

    Article  ADS  Google Scholar 

  7. Cuomo, D., Caleffi, M., Cacciapuoti, A.S.: arXiv:2002.11808 (2020)

  8. Mishra, N., Kapil, M., Rakesh, H., Anand, A., Mishra, N., Warke, A., Sarkar, S., Dutta, S., Gupta, S., Dash, A.P., et al.: Data management. Analytics and Innovation 101–145 (2021)

  9. Dunjko, V., Briegel, H.J.: . Rep. Prog. Phys. 81(7), 074001 (2018)

    Article  ADS  Google Scholar 

  10. Easttom, W.: Modern Cryptography, pp 385–390. Springer, Berlin (2021)

    Book  Google Scholar 

  11. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: .. In: Proceedings of the 5th ACM International Conference on Nanoscale Computing and Communication, pp 1–4 (2018)

  12. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G., Buell, D.A.: . Nature 574(7779), 505 (2019)

    Article  ADS  Google Scholar 

  13. Van Meter, R., Ladd, T.D., Fowler, A.G., Yamamoto, Y.: . Int. J. Quant. Inform. 8(01n02), 295 (2010)

    Article  Google Scholar 

  14. Krojanski, H.G., Suter, D.: . Phys. Rev. Lett. 93(9), 090501 (2004)

    Article  ADS  Google Scholar 

  15. DiAdamo, S., Ghibaudi, M., Cruise, J.: arXiv:2101.02504(2021)

  16. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: . Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. Whitney, M., Isailovic, N., Patel, Y., Kubiatowicz, J.: .. In: Proceedings of the 4th international conference on Computing frontiers, pp 83–94 (2007)

  18. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: . Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  19. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C.: . Nature Photonics 8(10), 770 (2014)

    Article  ADS  Google Scholar 

  20. Wootters, W.K., Zurek, W.H.: . Nature 299(5886), 802 (1982)

    Article  ADS  Google Scholar 

  21. Zomorodi-Moghadam, M., Houshmand, M., Houshmand, M.: . Int. J. Theor. Phys. 57(3), 848 (2018)

    Article  Google Scholar 

  22. Houshmand, M., Mohammadi, Z., Zomorodi-Moghadam, M., Houshmand, M.: . Int. J. Theor. Phys. 59(4), 1315 (2020)

    Article  Google Scholar 

  23. Davarzani, Z., Zomorodi-Moghadam, M., Houshmand, M., Nouri-baygi, M.: . Quantum Inf. Process 19(10), 1 (2020)

    Article  Google Scholar 

  24. Nielsen, M.A., Chuang, I.: Quant. Comput. Quant. Inform. (2002)

  25. Zomorodi-Moghadam, M., Navi, K.: . J. Circ. Syst. Comput. 25 (12), 1650152 (2016)

    Article  Google Scholar 

  26. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: . Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  27. Möttönen, M., Vartiainen, J.J., Bergholm, V., Salomaa, M.M.: . Phys. Rev. Lett. 93(13), 130502 (2004)

    Article  ADS  Google Scholar 

  28. Ballico, E., Bernardi, A., Carusotto, I., Mazzucchi, S., Moretti, V.: Quantum Physics and Geometry. Springer, Berlin (2019)

    Book  Google Scholar 

  29. Ying, M., Feng, Y.: . IEEE Trans. Comput. 58(6), 728 (2009)

    Article  MathSciNet  Google Scholar 

  30. Houshmand, M., Hosseini-Khayat, S., Wilde, M.M.: . IEEE Trans. Comput. 61(3), 299 (2010)

    Article  Google Scholar 

  31. Beals, R., Brierley, S., Gray, O., Harrow, A.W., Kutin, S., Linden, N., Shepherd, D., Stather, M.: . Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469(2153), 20120686 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  32. Andrés-Martínez, P., Heunen, C.: . Phys. Rev. A 100(3), 032308 (2019)

    Article  ADS  Google Scholar 

  33. Yepez, J.: . Int. J. Modern Phys. C 12(09), 1273 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  34. Liu, T.: Journal of Physics: Conference Series vol. 1634, vol. 1634, p 012089. IOP Publishing, Bristol (2020)

    Google Scholar 

  35. Valivarthi, R., Zhou, Q., Aguilar, G.H., Verma, V.B., Marsili, F., Shaw, M.D., Nam, S.W., Oblak, D., Tittel, W., et al.: . Nat. Photonics 10(10), 676 (2016)

    Article  ADS  Google Scholar 

  36. Caleffi, M., Cacciapuoti, A., Cataliotti, F., Gherardini, S., Tafuri, F., Bianchi, G.: arXiv:1810.08421 (2019)

  37. Yimsiriwattana, A., Lomonaco, S.J.Jr: .. In: Quantum Information and Computation II, vol. 5436. International Society for Optics and Photonics. International Society for Optics and Photonics, vol. 5436, pp 360–372 (2004)

  38. Meter, R.V., Munro, W., Nemoto, K., Itoh, K.M.: . ACM Journal on Emerging Technologies in Computing Systems (JETC) 3(4), 1 (2008)

    Article  Google Scholar 

  39. Chen, M.C., Li, R., Gan, L., Zhu, X., Yang, G., Lu, C.Y., Pan, J.W.: . Phys. Rev. Lett. 124(8), 080502 (2020)

    Article  ADS  Google Scholar 

  40. Cacciapuoti, A.S., Caleffi, M., Van Meter, R., Hanzo, L.: IEEE Transactions on Communications (2020)

  41. Humble, T.S., Thapliyal, H., Munoz-Coreas, E., Mohiyaddin, F.A., Bennink, R.S.: . IEEE Design and test 36(3), 69 (2019)

    Article  Google Scholar 

  42. Daei, O., Navi, K., Zomorodi-moghadam, M.: . Int. J. Theor. Phys. 59(12), 3804 (2020)

    Article  Google Scholar 

  43. Houshmand, M., Zamani, M.S., Sedighi, M., Arabzadeh, M.: . ACM Journal on Emerging Technologies in Computing Systems (JETC) 11 (3), 1 (2014)

    Article  Google Scholar 

  44. Houshmand, M., Sedighi, M., Zamani, M.S., Marjoei, K.: . ACM Journal on Emerging Technologies in Computing Systems (JETC) 13(4), 1 (2017)

    Article  Google Scholar 

  45. Wille, R., Große, D., Teuber, L., Dueck, G.W., Drechsler, R.: .. In: 38th International Symposium on Multiple Valued Logic (ismvl 2008), pp 220–225 (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keivan Navi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daei, O., Navi, K. & Zomorodi, M. Improving the Teleportation Cost in Distributed Quantum Circuits Based on Commuting of Gates. Int J Theor Phys 60, 3494–3513 (2021). https://doi.org/10.1007/s10773-021-04920-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04920-y

Keywords

Navigation