Skip to main content
Log in

Secret Sharing Based Multiparty Quantum Computation for Multiplication

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In secure multiparty quantum computation (SMQC), the multiplication is one of the fundamental operations that can be used to assemble the complex quantum protocols. The existing protocols have the approach of either (n, n) threshold or (t, n) threshold, with high cost and low security. In this paper, we propose a secret sharing based quantum protocol for (t, n) threshold secure multiparty multiplication, where t out of n players can compute the multiplication efficiently with low cost. In this protocol, the multiparty quantum multiplication can be performed if the number of secrets are more than the number of players as the secrets are shared using the linear secret sharing. Further, the security analysis shows that it is more secure against the intercept, entangle-measure, collusion, collective, and coherent attacks as compared to the existing protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chang, C., Lin, Y., Chiu, K., Huang, T.: The second quantum revolution with quantum computers. AAPPS Bull. 30(1), 9–22 (2020)

    Google Scholar 

  2. Cheng, S.T., Wang, C.Y.: Quantum switching and quantum merge sorting. IEEE Trans. Circ. Syst. I Regular Pap. 53(2), 316–325 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Gao, Z., Li, T., Li, Z.: Deterministic measurement-device-independent quantum secret sharing. Sci. China Phys. Mech. Astron. 63(12), 1–8 (2020)

    Article  Google Scholar 

  4. Gui-Lu, L.: General quantum interference principle and duality computer. Commun. Theor. Phys. 45(5), 825 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  5. Gyongyosi, L., Imre, S.: Resource prioritization and balancing for the quantum internet. Sci. Rep. 10(1), 1–27 (2020)

    Article  Google Scholar 

  6. Gyongyosi, L., Imre, S.: Scalable distributed gate-model quantum computers. Sci. Rep. 11(1), 1–28 (2021)

    Article  Google Scholar 

  7. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state grover algorithm and its proof-of-principle experimental demonstration. Opt. Commun. 284(14), 3639–3642 (2011)

    Article  ADS  Google Scholar 

  8. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Hu, X.M., Zhang, C., Zhang, C.J., Liu, B.H., Huang, Y.F., Han, Y.J., Li, C.F., Guo, G.C.: Experimental certification for nonclassical teleportation. Quantum Eng. 1(2), e13 (2019)

    Google Scholar 

  10. Karafyllidis, I.G.: Quantum computer simulator based on the circuit model of quantum computation. IEEE Trans. Circ. Syst. I: Regular Pap. 52(8), 1590–1596 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Li, H.S., Fan, P., Peng, H., Song, S., Long, G.L.: Multilevel 2-d quantum wavelet transforms. IEEE Trans. Cybern. (2021)

  12. Li, H.S., Fan, P., Xia, H.Y., Peng, H., Song, S.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circ. Syst. I: Regular Pap. 66(1), 341–354 (2018)

    Google Scholar 

  13. Liu, W., Fan, S., Khalid, A., Rafferty, C., O’Neill, M.: Optimized schoolbook polynomial multiplication for compact lattice-based cryptography on fpga. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 27(10), 2459–2463 (2019)

    Article  Google Scholar 

  14. Lv, S.X., Jiao, X.F., Zhou, P.: Multiparty quantum computation for summation and multiplication with mutually unbiased bases. Int. J. Theor. Phys. 58 (9), 2872–2882 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  15. Mashhadi, S.: Secure publicly verifiable and proactive secret sharing schemes with general access structure. Inf. Sci. 378, 99–108 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mashhadi, S.: General secret sharing based on quantum fourier transform. Quantum Inf. Process. 18(4), 114 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Mashhadi, S.: Improvement of a (t, n) threshold d- level quantum secret sharing scheme. J. Appl. Secur. Res. pp 1–12 (2020)

  18. Nielsen, M.A.: Chuang I.: Quantum computation and quantum information (2002)

  19. Qiang, X., Zhou, X., Aungskunsiri, K., Cable, H., O’Brien, J.L.: Quantum processing by remote quantum control. Quantum Sci. Technol 2(4), 045002 (2017)

    Article  ADS  Google Scholar 

  20. Quan, J., Li, Q., Liu, C., Shi, J., Peng, Y.: A simplified verifiable blind quantum computing protocol with quantum input verification. Quantum Eng. 3(1), e58 (2021)

    Article  Google Scholar 

  21. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Shang, T., Tang, Y., Chen, R., Liu, J.: Full quantum one-way function for quantum cryptography. Quantum Eng. 2(1), e32 (2020)

    Article  Google Scholar 

  23. Shi, R.H., Huang, L.S., Yang, W., Zhong, H.: Multi-party quantum state sharing of an arbitrary two-qubit state with bell states. Quantum Inf. Process. 10(2), 231–239 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shi, R.h., Mu, Y., Zhong, H., Cu, i J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  25. Shu, H., Yu, R., Jiang, W., Yang, W.: Efficient implementation of k-nearest neighbor classifier using vote count circuit. IEEE Trans. Circ. Syst. II Express Briefs 61(6), 448–452 (2014)

    Google Scholar 

  26. Song, X.L., Liu, Y.B., Deng, H.Y., Xiao, Y.G.: (t, n) threshold d-level quantum secret sharing. Sci. Rep. 7(1), 1–9 (2017)

    Article  ADS  Google Scholar 

  27. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player. Quantum Inf. Process. 19(2), 73 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  28. Sutradhar, K., Om, H.: A generalized quantum protocol for secure multiparty summation. IEEE Trans. Circ. Syst. II Express Briefs (2020)

  29. Sutradhar, K., Om, H.: Hybrid quantum protocols for secure multiparty summation and multiplication. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  30. Turner, L.R.: Inverse of the vandermonde matrix with applications (1966)

  31. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  32. Yan, Z., Qin, J.L., Qin, Z.Z., Su, X.L., Jia, X.J., Xie, C.D., Peng, K.C.: Generation of non-classical states of light and their application in deterministic quantum teleportation Fundam. Res. (2021)

  33. Yang, W., Huang, L., Shi, R., He, L.: Secret sharing based on quantum fourier transform. Quantum Inf. Process. 12(7), 2465–2474 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ye, Z.D., Pan, D., Sun, Z., Du, C.G., Yin, L.G., Long, G.L.: Generic security analysis framework for quantum secure direct communication. Front. Phys. 16(2), 1–9 (2021)

    Article  Google Scholar 

  35. Zhang, R., Shi R.H., Qin J.Q., Peng Z.W.: An economic and feasible quantum sealed-bid auction protocol. Quantum Inf. Process. 17(2), 35 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Zhou, L., Sheng, Y.B., Long, G.L.: Device-independent quantum secure direct communication against collective attacks. Sci. Bull. 65(1), 12–20 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kartick Sutradhar.

Ethics declarations

This article does not contain any studies with human or animal subjects performed by the any of the authors. The manuscript has been prepared following the instructions provided in the Authors Guidelines of the journal.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sutradhar, K., Om, H. Secret Sharing Based Multiparty Quantum Computation for Multiplication. Int J Theor Phys 60, 3417–3425 (2021). https://doi.org/10.1007/s10773-021-04917-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04917-7

Keywords

Navigation