Skip to main content
Log in

Secure Multi-Party Quantum Computation Based on Blind Quantum Computation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Blind quantum computation (BQC) allows quantum-limited clients to delegate their quantum-computing tasks to a remote quantum server while keep their inputs, outputs, and algorithms private during the computation. Secure multi-party computation aims to solve the problem of collaborative calculations among a group of distrustful participants. Although BQC has been used to solve the problem of secure two-party quantum computation, the case of multiple clients carrying out collaborative calculations has not been considered. In this paper, a quantum secure three-party computation protocol is proposed based on BQC, and the protocol is further extended to a quantum secure multi-party computation protocol. Using the blindness of BQC, the problem of privacy of clients’ data in quantum secure multi-party computation is solved. Moreover, in the preparation stage of the protocols, the initial states only need to be encrypted once, which is simpler than previous protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of the 35th Annual IEEE Symposium on Foundations of Computer Science, pp.124–134.IEEE (1994)

  2. Grover, L.K.: A fast quantum mechanical algorithm for estimating the median. Phys Rev Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  3. Childs, A.M.: Secure assisted quantum computation. Quan Inf Comput. 5, 456–466 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Broadbent, A., Fitzsimons, J., Kashefi, E.: Universal blind quantum computation. In: Proceeding of the 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 517–526.IEEE (2009)

  5. Fitzsimons, J.F., Kashefi, E.: Unconditionally verifiable blind quantum computation. Phys. Rev. A. 96, 012303 (2017)

    Article  ADS  Google Scholar 

  6. Zhang, X.Q., Weng, J., Li, X.C., et al.: Single-server blind quantum computation with quantum circuit model. Quantum Inf. Process. 17, 134 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, X.Q., Luo, W.Q., Zeng, G.Q., et al.: A hybrid universal blind quantum computation. Inf. Sci. 498, 135–143 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sato, G., Koshiba, T., Morimae, T.: Arbitrable blind quantum computation. Quantum Inf. Process. 18, 370 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  9. Dunjko, V., Kashefi, E., Leverrier, A.: Blind quantum computing with weak coherent pulses. Phys. Rev. Lett. 108, 200502 (2012)

    Article  ADS  Google Scholar 

  10. Li, Q., Chan, W.H., Wu, C.H., et al.: Triple-server blind quantum computation using entanglement swapping. Phys. Rev. A. 89, 040302 (2014)

    Article  ADS  Google Scholar 

  11. Takeuchi, Y., Fujii, K., Ikuta, R., Yamamoto, T., Imoto, N.: Blind quantum computation over a collective-noise channel. Phys. Rev. A. 93, 052307 (2016)

    Article  ADS  Google Scholar 

  12. Sheng, Y.B., Zhou, L.: Blind quantum computation with a noise channel. Phys. Rev. A. 98, 052343 (2018)

    Article  ADS  Google Scholar 

  13. Morimae, T., Fujii, K.: Blind quantum computation protocol in which Alice only makes measurements. Phys. Rev. A. 87, 050301 (2013)

    Article  ADS  Google Scholar 

  14. Barz, S., Kashefi, E., Broadbent, A., Fitzsimons, J.F., Zeilinger, A., Walther, P.: Demonstration of blind quantum computing. Science. 335, 303–308 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  15. Greganti, C., Roehsner, M.C., Barz, S., et al.: Demonstration of measurement-only blind quantum computing. New J. Phys. 18, 013020 (2016)

    Article  ADS  Google Scholar 

  16. Huang, H.L., Zhao, Q., Ma, X.F., et al.: Experimental blind quantum computing for a classical client. Phys. Rev. Lett. 119, 050503 (2017)

    Article  ADS  Google Scholar 

  17. Yao, A.C.: Protocols for secure computations. In: Proceeding of the 23rd Annual Symposium on Foundations of Computer Science, pp.160–164.IEEE (1982)

  18. Yao, A.C.: How to generate and exchange secrets. In: Proceeding of the 27th Annual Symposium on Foundations of Computer Science, pp.162–167.IEEE (1986)

  19. Yao, A.C.: Security of quantum protocols against coherent measurements. In: Proceeding of the 27th Annual ACM symposium on Theory of Computing, pp.67–75.ACM (1995)

  20. Dupuis, F., Nielsen, J.B., Salvail, L.: Secure two-party quantum evaluation of unitaries against specious adversaries. Lect. Notes Comput. Sci. 6223, 685–706 (2010)

    Article  MathSciNet  Google Scholar 

  21. Kashefi, E., Wallden, P.: Garbled quantum computation. Cryptography. 1, 6–35 (2017)

    Article  Google Scholar 

  22. Sun, Z., Li, Q., Yu, F., Chan, W.H.: Application of blind quantum computation to two-party quantum computation. Int. J. Theor. Phys. 57, 1864–1871 (2018)

    Article  MathSciNet  Google Scholar 

  23. Zhu, Y.Q., Li, Q., Liu, C.D., et al.: Secure two-party computation based on blind quantum computation. Int. J. Theor. Phys. 59, 2074–2082 (2020)

    Article  MathSciNet  Google Scholar 

  24. Lv, S.X., Jiao, X.F and Zhou, P.: Multiparty quantum computation for summation and multiplication with mutually unbiased bases. Int. J. Theor. Phys. 58, 2872–2882 (2019)

  25. Shi, R.H., Mu, Y., Zhong, H., Cui, J., Zhang, S.: Secure multiparty quantum computation for summation and multiplication. Sci. Rep. 6, 19655 (2016)

    Article  ADS  Google Scholar 

  26. Song, X.L., Gou, R., Wen, A.: Secure multiparty quantum computation based on Lagrange unitary operator. Sci. Rep. 10, 7921 (2020)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (Grant No. 61601358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Ming Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, GJ., Wang, MM. Secure Multi-Party Quantum Computation Based on Blind Quantum Computation. Int J Theor Phys 60, 3003–3012 (2021). https://doi.org/10.1007/s10773-021-04902-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04902-0

Keywords

Navigation