Skip to main content
Log in

Upper and Lower Bound States for Zero Dimensional Space in Scalar Quantum Field Theory

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The varational method with the Hamiltonian formalism of quantum field theory (QFT) is used to study the bound state for scalar particle and antiparticle (bosons with spin 0) in a reformulated model. We first recall some points about the two-body ground state energy solutions in 3 + 1 dimensions. In this case, some approximations are needed to obtain numerical solutions. Then, we study the upper and lower bound states in zero dimensional space for the two-body problem using simple trial states. It is shown that when the dimension of space is zero some analytical (exact) solutions can be obtained when the interactions are small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Salpeter, E.E., Bethe, H.A.: . Phys. Rev. 84, 1232 (1951)

    Article  ADS  MathSciNet  Google Scholar 

  2. Darewych, J.W.: . Annales de la Fondation Louis de Broglie (Paris) 23, 15 (1998)

    MathSciNet  Google Scholar 

  3. Emami-Razavi, M., Darewych, J.W.: . J. Phys. G Nucl. Part. Phys. 31, 1095 (2005)

    Article  ADS  Google Scholar 

  4. Darewych, J.W.: . Can. J. Phys. 84, 625 (2006)

    Article  ADS  Google Scholar 

  5. Emami-Razavi, M.: . Phys. Lett. B 640, 285 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  6. Emami-Razavi, M., Bergeron, N., Darewych, J.W.: . J. Phys. G Nucl. Part. Phys. 38, 065004 (2011)

    Article  ADS  Google Scholar 

  7. Terekidi, A.G., Darewych, J.W.: . J. Math. Phys. 95, 1474 (2004)

    Article  ADS  Google Scholar 

  8. Emami-Razavi, M.: . Phys. Rev. A 77, 042104 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Emami-Razavi, M., Bergeron, N., Darewych, J.W.: . Int. J. Modern Phy. E 21, 1250091 (2012)

    Article  ADS  Google Scholar 

  10. Shiff, L.I.: . Phys. Rev. 130, 458 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. Coleman, S.: . Phys. Rev. D 11, 2088 (1975)

    Article  ADS  Google Scholar 

  12. Emami-Razavi, M., Bergeron, N., Darewych, J.W.: . J. Phys. G Nucl. Part. Phys. 37, 025007 (2010)

    Article  ADS  Google Scholar 

  13. Weinhold, F.: . J. Math. Phys. 11, 2127–2138 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  14. Marmorino, M.G.: . Int. J. Theor. Phys. 39, 2439 (2000)

    Article  Google Scholar 

  15. Marmorino, M.G.: . J. Math. Chem. 58, 88113 (2020)

    Article  MathSciNet  Google Scholar 

  16. Bender, C.M., Boettcher, S., Lipatov, L.: . Phys Rev. D 46, 5557–5573 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Argyres, E.N., van Hameren1, A.F.W., Kleiss, R.H.P., Papadopoulos, C.G.: . Eur. Phys. J. C 19, 567582 (2001)

  18. Rivasseau, V.: Adv. Math. Phys. 2009, Article ID 180159. https://doi.org/10.1155/2009/180159 (2009)

  19. Boozer, A.D.: . Eur. J. Phys. 28, 729–745 (2007)

    Article  MathSciNet  Google Scholar 

  20. Emami-Razavi, M., Kowalski, M.: . Phys. Rev. D 76, 045006 (2007)

    Article  ADS  Google Scholar 

  21. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes, 2nd edn. Cambridge University Press, Cambridge, England (1992)

    MATH  Google Scholar 

  22. Ding, B., Darewych, J.: . J. Phys. G Nucl. Part. Phys. 26, 907 (2000). 27, 253 (2001)

    Article  ADS  Google Scholar 

  23. Emami-Razavi, M., Darewych, J.W.: . J. Phys. G Nucl. Part. Phys. 32, 1171–1191 (2006)

    Article  ADS  Google Scholar 

  24. Darewych, J.W.: . Can. J. Phys. 76, 523 (1998)

    Article  ADS  Google Scholar 

  25. Nieuwenhuis, T., Tjon, J.A.: . Phys. Rev. Lett. 77, 814 (1996)

    Article  ADS  Google Scholar 

  26. Gross, F.: . Phys. Rev C 26, 2203 (1982)

    Article  ADS  Google Scholar 

  27. Pauling, L., Wilson, E.B. Introduction to Quantum Mechanics: With Applications to Chemistry. Dover, Books on Physics and Chemistry, Manufactured in the United States by Courier Corporation (1985)

  28. Emami-Razavi, M., Kowalski, M., Asgary, S.: . Int J. Theor. Phys. 57, 2989—004 (2018). Correction to the same paper: Int. J. Theor Phys 59, 641 2020

    Google Scholar 

  29. Jean, Y.C., Mallon, P.E., Schrader, D.M.: Principles and applications of positron & positronium chemistry. World Scientific 17–36 (2003)

  30. Mitroy, J., Bubin, S., Horiuchi, W., Suzuki, Y., Adamowicz, L., Cencek, W., Szalewicz, K., Komasa, J., Blume, D., Varga, K.: . Rev. Mod. Phys. 85, 693–749 (2013)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Emami-Razavi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emami-Razavi, M. Upper and Lower Bound States for Zero Dimensional Space in Scalar Quantum Field Theory. Int J Theor Phys 60, 3128–3142 (2021). https://doi.org/10.1007/s10773-021-04897-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04897-8

Keywords

Navigation