Skip to main content
Log in

Optimal teleportation via a non-maximally entangled channel in qutrits system

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum teleportation provides a way to transmit information from one location to another via a quantum channel. In traditional teleportation schemes, if the quantum channel is a non-maximally entangled quantum state, the success probability of teleporting an unknown three-dimensional quantum state can not be reached 100%. Here we propose a deterministic teleportation scheme to overcome this challenge, and our results show that the success probability of teleporting a three-dimensional quantum state can be increased to 100%. In particular, we have analyzed the security of our teleportation process, including particle transmission, and proved this process safe. Our scheme has high experimental feasibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: . Phys. Rev. Lett. 70, 1895 (1993). https://doi.org/10.1103/PhysRevLett.70.1895

    Article  ADS  MathSciNet  Google Scholar 

  2. Liu, S., Lou, Y., Jing, J.: . Nature Commun. 11(1), 1 (2020). https://doi.org/10.1038/s41467-020-17616-4

    Article  ADS  Google Scholar 

  3. Huang, N.N., Huang, W.H., Li, C.M.: . Sci. Rep. 10(1), 1 (2020). https://doi.org/10.1038/s41598-020-60061-y

    Article  Google Scholar 

  4. Langenfeld, S., Welte, S., Hartung, L., Daiss, S., Thomas, P., Morin, O., Distante, E., Rempe, G.: . Phys. Rev. Lett. 126, 130502 (2021). https://doi.org/10.1103/PhysRevLett.126.130502

    Article  ADS  Google Scholar 

  5. Qiao, H., Kandel, Y.P., Manikandan, S.K., Jordan, A.N., Fallahi, S., Gardner, G.C., Manfra, M.J., Nichol, J.M.: . Nature Commun. 11(1), 1 (2020). https://doi.org/10.1038/s41467-020-16745-0

    Article  Google Scholar 

  6. Karlsson, A., Bourennane, M.: . Phys. Rev. A 58, 4394 (1998). https://doi.org/10.1103/PhysRevA.58.4394

    Article  ADS  MathSciNet  Google Scholar 

  7. Stenholm, S., Bardroff, P.J.: . Phys. Rev. A 58, 4373 (1998). https://doi.org/10.1103/PhysRevA.58.4373

    Article  ADS  MathSciNet  Google Scholar 

  8. Li, C., Song, H.S., Luo, Y.X.: . Phys. Lett. A 297(3-4), 121 (2002). https://doi.org/10.1016/S0375-9601(02)00430-9. https://www.sciencedirect.com/science/article/pii/S0375960102004309

    Article  ADS  MathSciNet  Google Scholar 

  9. Ishizaka, S., Hiroshima, T.: . Phys. Rev. Lett. 101, 240501 (2008). https://doi.org/10.1103/PhysRevLett.101.240501

    Article  ADS  Google Scholar 

  10. Li, Y.H., Qiao, Y., Sang, M.H., Nie, Y.Y.: . Int. J. Theor. Phys. 59(2), 502 (2020). https://doi.org/10.1007/s10773-019-04344-9

    Article  Google Scholar 

  11. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: . Nature 390(6660), 575 (1997). https://doi.org/10.1038/37539

    Article  ADS  Google Scholar 

  12. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: . Phys. Rev. Lett. 80, 1121 (1998). https://doi.org/10.1103/PhysRevLett.80.1121

    Article  ADS  MathSciNet  Google Scholar 

  13. Ren, J.G., Xu, P., Yong, H.L., Zhang, L., Liao, S.K., Yin, J., Liu, W.Y., Cai, W.Q., Yang, M., Li, L., et al: . Nature 549(7670), 70 (2017)

    Article  ADS  Google Scholar 

  14. Li, W.L., Li, C.F., Guo, G.C.: . Phys. Rev. A 61, 034301 (2000). https://doi.org/10.1103/PhysRevA.61.034301

    Article  ADS  Google Scholar 

  15. Roa, L., Delgado, A., Fuentes-Guridi, I.: . Phys. Rev. A 68, 022310 (2003). https://doi.org/10.1103/PhysRevA.68.022310

    Article  ADS  Google Scholar 

  16. Banaszek, K.: . Phys. Rev. A 62, 024301 (2000). https://doi.org/10.1103/PhysRevA.62.024301

    Article  ADS  Google Scholar 

  17. Gou, Y.T., Shi, H.L., Wang, X.H., Liu, S.Y.: . Quantum Inf. Process 16(11), 1 (2017). https://doi.org/10.1007/s11128-017-1727-3

    Article  ADS  Google Scholar 

  18. Verma, V.: . Int. J. Theor. Phys. 60(1), 397 (2021). https://doi.org/10.1007/s10773-020-04707-7

    Article  Google Scholar 

  19. Sun, K., Wang, Y., Liu, Z.H., Xu, X.Y., Xu, J.S., Li, C.F., Guo, G.C., Castellini, A., Nosrati, F., Compagno, G., Franco, R.L.: . Opt. Lett. 45(23), 6410 (2020). https://doi.org/10.1364/OL.401735. http://ol.osa.org/abstract.cfm?URI=ol-45-23-6410

    Article  ADS  Google Scholar 

  20. Kojima, Y., Nakajima, T., Noiri, A., Yoneda, J., Otsuka, T., Takeda, K., Li, S., Bartlett, S., Ludwig, A., Wieck, A., et al: . npj Quantum Inf. 7(1), 1 (2021). https://doi.org/10.1038/s41534-021-00403-4

    Article  Google Scholar 

  21. Ru, S., An, M., Yang, Y., Qu, R., Wang, F., Wang, Y., Zhang, P., Li, F.: . Phys. Rev. A 103, 052404 (2021). https://doi.org/10.1103/PhysRevA.103.052404

    Article  ADS  Google Scholar 

  22. Roa, L., Groiseau, C.: . Phys. Rev. A 91, 012344 (2015). https://doi.org/10.1103/PhysRevA.91.012344

    Article  ADS  MathSciNet  Google Scholar 

  23. Cerf, N.J., Bourennane, M., Karlsson, A., Gisin, N.: . Phys. Rev. Lett. 88, 127902 (2002). https://doi.org/10.1103/PhysRevLett.88.127902

    Article  ADS  Google Scholar 

  24. Ali-Khan, I., Broadbent, C.J., Howell, J.C.: . Phys. Rev. Lett. 98, 060503 (2007). https://doi.org/10.1103/PhysRevLett.98.060503

    Article  ADS  Google Scholar 

  25. Collins, D., Gisin, N., Linden, N., Massar, S., Popescu, S.: . Phys. Rev. Lett. 88, 040404 (2002). https://doi.org/10.1103/PhysRevLett.88.040404

    Article  ADS  MathSciNet  Google Scholar 

  26. Krenn, M., Huber, M., Fickler, R., Lapkiewicz, R., Ramelow, S., Zeilinger, A.: . Proc. Natl. Acad. Sci. 111(17), 6243 (2014). https://doi.org/10.1073/pnas.1402365111. http://www.pnas.org/content/111/17/6243.abstract

    Article  ADS  Google Scholar 

  27. Wang, J., Paesani, S., Ding, Y., Santagati, R., Skrzypczyk, P., Salavrakos, A., Tura, J., Augusiak, R., Mančinska, L., Bacco, D., et al.: . Science 360(6386), 285 (2018). https://doi.org/10.1126/science.aar7053. https://science.sciencemag.org/content/sci/360/6386/285.full.pdf

    Article  MathSciNet  Google Scholar 

  28. Llewellyn, D., Ding, Y., Faruque, I.I., Paesani, S., Bacco, D., Santagati, R., Qian, Y.J., Li, Y., Xiao, Y.F., Huber, M., et al: . Nat. Phys. 16(2), 148 (2020). https://doi.org/10.1038/s41567-019-0727-x

    Article  Google Scholar 

  29. Zhou, R.G., Li, X., Qian, C., Ian, H.: . Int. J. Theor. Phys. 59(1), 166 (2020). https://doi.org/10.1007/s10773-019-04306-1

    Article  Google Scholar 

  30. Jiang, S.X., Zhou, R.G., Luo, G., Liang, X., Fan, P.: . Int. J. Theor. Phys. 59(9), 2966 (2020). https://doi.org/10.1007/s10773-020-04557-3

    Article  Google Scholar 

  31. Tan, X.D., Han, J.Q.: . Int. J. Theor. Phys. 60(4), 1275 (2021). https://doi.org/10.1007/s10773-021-04753-9

    Article  Google Scholar 

  32. Kues, M., Reimer, C., Roztocki, P., Cortés, L. R., Sciara, S., Wetzel, B., Zhang, Y., Cino, A., Chu, S.T., Little, B.E., et al: . Nature 546(7660), 622 (2017). https://doi.org/10.1038/nature22986

    Article  ADS  Google Scholar 

  33. Cozzolino, D., Bacco, D., Da Lio, B., Ingerslev, K., Ding, Y., Dalgaard, K., Kristensen, P., Galili, M., Rottwitt, K., Ramachandran, S., Oxenløwe, L.K.: . Phys. Rev. Appl. 11, 064058 (2019). https://doi.org/10.1103/PhysRevApplied.11.064058

    Article  ADS  Google Scholar 

  34. Gao, X., Erhard, M., Zeilinger, A., Krenn, M.: . Phys. Rev. Lett. 125, 050501 (2020). https://doi.org/10.1103/PhysRevLett.125.050501

    Article  ADS  MathSciNet  Google Scholar 

  35. Hu, X.M., Xing, W.B., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C., Erker, P., Huber, M.: . Phys. Rev. Lett. 125, 090503 (2020). https://doi.org/10.1103/PhysRevLett.125.090503

    Article  ADS  Google Scholar 

  36. Shen, Y., Nape, I., Yang, X., Fu, X., Gong, M., Naidoo, D., Forbes, A.: . Light Sci & Appl 10(1), 1 (2021). https://doi.org/10.1038/s41377-021-00493-x

    Article  Google Scholar 

  37. Fu, F.X., Chen, C., Huang, X., Jiang, M.: .. In: 2019 Chinese Control Conference (CCC). 6896–6899. https://doi.org/10.23919/ChiCC.2019.8865993. https://ieeexplore.ieee.org/abstract/document/8865993 (2019)

  38. Fu, F., Jiang, M.: . J. Opt. Soc. Am. B 37(2), 233 (2020). https://doi.org/10.1364/JOSAB.37.000233. http://josab.osa.org/abstract.cfm?URI=josab-37-2-233

    Article  ADS  Google Scholar 

  39. Fu, F., Li, H., Xue, S., Jiang, M.: . JOSA B 37(6), 1896 (2020). https://doi.org/10.1364/JOSAB.392613. http://josab.osa.org/abstract.cfm?URI=josab-37-6-1896

    Article  ADS  Google Scholar 

  40. Zhang, H., Zhang, C., Hu, X.M., Liu, B.H., Huang, Y.F., Li, C.F., Guo, G.C.: . Phys. Rev. A 99, 052301 (2019). https://doi.org/10.1103/PhysRevA.99.052301

    Article  ADS  Google Scholar 

  41. Shor, P.W.: . Phys. Rev. A 52, R2493 (1995). https://doi.org/10.1103/PhysRevA.52.R2493.x

    Article  ADS  Google Scholar 

  42. Brandt, F., Hiekkamáki, M., Bouchard, F., Huber, M., Fickler, R.: . Optica 7(2), 98 (2020). https://doi.org/10.1364/OPTICA.375875. http://www.osapublishing.org/optica/abstract.cfm?URI=optica-7-2-98

    Article  ADS  Google Scholar 

  43. Żukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: . Phys. Rev. Lett. 71, 4287 (1993). https://doi.org/10.1103/PhysRevLett.71.4287

    Article  ADS  Google Scholar 

  44. Bose, S., Vedral, V., Knight, P.L.: . Phys. Rev. A 57, 822 (1998). https://doi.org/10.1103/PhysRevA.57.822

    Article  ADS  Google Scholar 

  45. Pan, J.W., Bouwmeester, D., Weinfurter, H., Zeilinger, A.: . Phys. Rev. Lett. 80, 3891 (1998). https://doi.org/10.1103/PhysRevLett.80.3891

    Article  ADS  MathSciNet  Google Scholar 

  46. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., et al: Phys. Rev. Lett. 123(7). https://doi.org/10.1103/physrevlett.123.070505 (2019)

  47. Kurpiers, P., Magnard, P., Walter, T., Royer, B., Pechal, M., Heinsoo, J., Salathé, Y., Akin, A., Storz, S., Besse, J.C., et al.: . Nature 558(7709), 264 (2018). https://doi.org/10.1126/science.1122858. https://science.sciencemag.org/content/312/5770/83

    Article  ADS  Google Scholar 

  48. Axline, C.J., Burkhart, L.D., Pfaff, W., Zhang, M., Chou, K., Campagne-Ibarcq, P., Reinhold, P., Frunzio, L., Girvin, S., Jiang, L., et al: . Nat. Phys. 14(7), 705 (2018). https://doi.org/10.1038/s41567-018-0115-y

    Article  Google Scholar 

  49. Campagne-Ibarcq, P., Zalys-Geller, E., Narla, A., Shankar, S., Reinhold, P., Burkhart, L., Axline, C., Pfaff, W., Frunzio, L., Schoelkopf, R.J., Devoret, M.H.: . Phys. Rev. Lett. 120, 200501 (2018). https://doi.org/10.1103/PhysRevLett.120.200501

    Article  ADS  Google Scholar 

  50. Leung, N., Lu, Y., Chakram, S., Naik, R., Earnest, N., Ma, R., Jacobs, K., Cleland, A., Schuster, D.: . npj Quantum Inf. 5(1), 1 (2019). https://doi.org/10.1038/s41534-019-0128-0

    Article  Google Scholar 

  51. Zhong, Y., Chang, H.S., Satzinger, K., Chou, M.H., Bienfait, A., Conner, C., Dumur, É. , Grebel, J., Peairs, G., Povey, R., et al: . Nat. Phys. 15(8), 741 (2019). https://doi.org/10.1038/s41567-019-0507-7

    Article  Google Scholar 

  52. Xu, W.L., Wang, T.J., Wang, C.: . IEEE Access 7, 115331 (2019). https://doi.org/10.1109/ACCESS.2019.2934408

    Article  Google Scholar 

  53. DiCarlo, L., Chow, J.M., Gambetta, J.M., Bishop, L.S., Johnson, B.R., Schuster, D., Majer, J., Blais, A., Frunzio, L., Girvin, S., et al: . Nature 460(7252), 240 (2009). https://doi.org/10.1038/nature08121

    Article  ADS  Google Scholar 

  54. Barends, R., Kelly, J., Megrant, A., Veitia, A., Sank, D., Jeffrey, E. , White, T.C., Mutus, J., Fowler, A.G., Campbell, B., et al.: . Nature 508(7497), 500 (2014). https://doi.org/10.1038/nature13171

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank R. Peng, C. S. Zhao and Y. Q. Liu for their fruitful discussions. This work was supported by National Natural Science Foundation of China (NSFC): Grants No. 11574041.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xin, X., Qin, S., Ding, M. et al. Optimal teleportation via a non-maximally entangled channel in qutrits system. Int J Theor Phys 60, 3197–3208 (2021). https://doi.org/10.1007/s10773-021-04886-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04886-x

Keywords

Navigation