Skip to main content
Log in

Impact of \(\mathcal {P}\mathcal {T}\)-Symmetric Operation on Concurrence and the First-Order Coherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we lock the focus in effect of \(\mathcal {P}\mathcal {T}\)-symmetric operation on the dynamics of concurrence and the first-order coherence for Heisenberg XY model. We discover the complementarity between concurrence and the first-order coherence. And the complementarity indicates that \(\mathcal {P}\mathcal {T}\)-symmetric operation induces enhancement of coherence at the expense of concurrence loss in Heisenberg XY model. Meanwhile, we find that coherence under \(\mathcal {P}\mathcal {T}\)-symmetric operation can be recovred in a certain range of time dependent parameter, thus we can choose some special \(\mathcal {P}\mathcal {T}\)-symmetric operation to make the coherence maximum. Our analysis yields the result that the quadratic sum of these two resources can be improved via \(\mathcal {P}\mathcal {T}\)-symmetric operation. Both temperature and parameter of \(\mathcal {P}\mathcal {T}\)-symmetric operation will change the magnitude of the increment in the quadratic sum of concurrence and the first-order coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wootters, W. K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  2. Eisert, J., Plenio, M. A.: A comparison of entanglement measures. J. Mod. Opt. 46, 145 (1999)

    Article  ADS  Google Scholar 

  3. Piani, M.: Entanglement and restricted measurements. Phys. Rev. Lett. 103, 160504 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  4. Gisin, N.: Bell’s inequality holds for all non-product states. Phys. Lett. A. 154, 201 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C. H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W. K.: Teleporting an unknown quantum state via dual classical and Einstein-CPodolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zheng, S. B., Guo, G. C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392 (2000)

    Article  ADS  Google Scholar 

  7. Liang, H. Q., Liu, J. M., Feng, S. S., Chen, J. G., Xu, X. Y.: Effects of noises on joint remote state preparation via a GHZ-class channel. Quantum Inf. Process. 14, 3857 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  8. Wang, D., Hu, Y. D., Wang, Z. Q., Ye, L.: Efficient and faithful remote preparation of arbitrary threeand four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  Google Scholar 

  9. Wang, D., Huang, A. J., Sun, W. Y., Shi, J. D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally concurrence. Quantum Inf. Process. 15, 3367 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  10. Sun, W. Y., Shi, J. D., Wang, D., Ye, L.: Exploring the global entanglement and quantum phase transition in the spin 1/2 XXZ model with Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 15, 245 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bruschi, D. E., Fuentes, I., Louko, J.: Voyage to alpha centauri, entanglement degradation of cavity modes due to motion. Phys. Rev. D. 85, 061701 (2012)

    Article  ADS  Google Scholar 

  12. Hu, M. L., Hu, X., Wang, J., Fan, H.: Quantum coherence and geometric quantum discord. Phys. Rep. 762–764, 1–100 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Meng, Q., Ren, Z., Xin, Z.: Dynamics of quantum coherence and quantum phase transitions in XY spin systems. Phys. Rev. A. 98, 012303 (2018)

    Article  ADS  Google Scholar 

  14. Li, Y. C., Lin, H. Q.: Quantum coherence and quantum phase transitions. Sci Rep. 6, 26365 (2016)

    Article  ADS  Google Scholar 

  15. Glauber, R. J.: The quantum theory of optical coherence. Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  16. Glauber, R. J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  17. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  18. Baumgratz, T., Cramer, M., Plenio, M. B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  19. Chin, A. W., Prior, J., Rosenbach, R.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment-protein complexes. Nat. Phys. 9(2), 113–118 (2013)

    Article  Google Scholar 

  20. Li, C. M., Lambert, N., Chen, Y. N., Chen, G. Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  21. Demkowicz-Dobrzanski, R., Maccone, L.: Using entanglement against noise in quantum metrology. Phys. Rev. Lett. 113, 250801 (2014)

    Article  ADS  Google Scholar 

  22. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  23. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X. 5, 021001 (2015)

    Google Scholar 

  24. Bruschi, D.E., Sabin, C., Paraoanu, G.S.: Entanglement, coherence, and redistribution of quantum resources in double spontaneous down-conversion processes. Phys. Rev. A. 95(6), 062324 (2017)

    Article  ADS  Google Scholar 

  25. Fan, X. G., Sun, W. Y., Ye, L.: Universal complementarity between coherence and intrinsic concurrence for two-qubit states. New. J. Phys. 21, 9 (2019)

    Article  MathSciNet  Google Scholar 

  26. Streltsov, A., Singh, U., Dhar, H. S.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  27. Hu, M. L., Fan, H.: Relative quantum coherence, incompatibility, and quantum correlations of states. Phys. Rev. A. 95, 052106 (2017)

    Article  ADS  Google Scholar 

  28. Hu, M. L., Wang, X. M., Fan, H.: Hierarchy of nonlocal advantage of quantum coherence and Bell nonlocality. Phys. Rev A. 98, 032317 (2018)

    Article  ADS  Google Scholar 

  29. Hu, M. L., Fan, H.: Nonlocal advantage of quantum coherence in high-dimensional states. Phys. Rev. A. 98, 022312 (2018)

    Article  ADS  Google Scholar 

  30. Qian, X. F., Malhotra, T., Vamivakas, A. N., Eberly, J. H.: Coherence constraints and the last hidden optical coherence. Phys. Rev Lett. 117, 153901 (2016)

    Article  ADS  Google Scholar 

  31. Kagalwala, K. H., Giuseppe, G. D., Abouraddy, A. F., Saleh, B. E. A.: Implementation of single-photon three-qubit CNOT gates using spatial light modulators. Nat. Photonics. 7, 72 (2013)

    Article  ADS  Google Scholar 

  32. Hill, S., Wootters, W. K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  33. Bender, C. M., Boettcher, S.: Real spectra in non-Hermitian Hamiltonians having \(\mathcal {P}\mathcal {T}\)-symmetry. Phys. Rev. Lett. 80, 5243 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  34. Bender, C. M., Brody, D. C., Jones, H. F.: Complex extension of quantum mechanics. Phys. Rev, Lett. 89, 270401 (2002)

    Article  MathSciNet  Google Scholar 

  35. Bender, C. M.: Making sense of non-Hermitian Hamiltonians. Rep. Prog. Phys. 70, 947 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  36. Hu, M. L., Fan, H.: Quantum coherence of multiqubit states in correlated noisy channels. Sci. China Phys. Mech. Astron. 63, 230322 (2020)

    Article  ADS  Google Scholar 

  37. Hu, M. L., Zhang, Y. H., Fan, H.: Nonlocal advantage of quantum coherence in a dephasing channel with memory. Chin. Phys. B. 30, 030308 (2021)

    Article  ADS  Google Scholar 

  38. Ha, Z.N.C.: Quantum many-body systems in one dimension. World Sci (1996)

  39. Xie, Y. X., Gao, Y. Y.: Nonlocal advantage of quantum coherence in the Heisenberg XY model. Laser Phys. Lett. 16, 045202 (2019)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant Nos. 11575001, 61601002 and 11847020), Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139) and Natural Science Foundation of Education Department of Anhui Province (Grant No. KJ2016SD49), and also the fund from CAS Key Laboratory of Quantum Information (Grant No. KQI201701).

Funding

National Science Foundation of China; Nos. 11575001.

Author information

Authors and Affiliations

Authors

Contributions

Wan-Yue Li and Liu Ye made almost equal contributions to the paper.

Corresponding author

Correspondence to Liu Ye.

Ethics declarations

Consent for Publication

All authors agreed to submit the paper to the journal.

Competing interests

The authors declare no conflict of interest.

Additional information

Animal Research

The paper is a purely theoretical research and does not involve any animal experiments.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, WY., Ye, L. Impact of \(\mathcal {P}\mathcal {T}\)-Symmetric Operation on Concurrence and the First-Order Coherence. Int J Theor Phys 60, 2878–2888 (2021). https://doi.org/10.1007/s10773-021-04883-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04883-0

Keywords

Navigation