Skip to main content
Log in

Optimal Schemes for Quantum Teleportation of Ten-Qubit State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A teleportation protocol for certain class of ten-qubit state by utilizing an eight-qubit entangled state as a quantum channel has been proposed. In this paper, we present an optimal scheme for the teleportation of a ten-qubit state by using a stochastic local operation and classical communication(SLOCC) equivalent to four-qubit χ state as entanglement channel. Only von Neumann type measurement, controlled-not (CNOT) operations and appropriate unitary operations are needed in this scheme. Receiver Bob can reconstruct the initial state by introducing the appropriate unitary transformation and auxiliary particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouwmeester, D., Pan, J.W., Daniell, M., Weinfurter, H., Zeilinger, A.: Observation of three-photon Greenberger-Horne-Zeilinger entanglement. Phys. Rev. Lett. 82, 1345–1349 (1999)

  2. Pan, J.W., Bouwmeester, D., Daniell, M., Weinfurter, H., Zeilinger, A.: Experimental test of quantum nonlocality in three-photon Greenberger-Horne-Zeilinger entanglement. Nature. 403, 515–519 (2000)

  3. Huang, J.S., Oh, C.H., Wei, L.F.: Testing tripartite Mermin inequalities by spectral joint measurements of qubits. Phys. Rev. A. 83, 062108 (2011)

  4. Bennett, C.H., DiVincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.: K: erratum: remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

  5. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty- controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A. 72(2), 022338 (2005)

  6. Rigolin, G.: Quantum teleportation of an arbitrary two qubit state and its relation to multipartite entanglement. Phys. Rev. A. 71(3), 032303 (2005)

  7. Deng, F.G., Li, X.H., Li, C.Y., Zhou, P., Zhou, H.Y.: Multiparty quantum state sharing of an arbitrary two-particle state with Einstein-Podolsky-Rosen pairs. Phys. Rev. A. 72(4), 044301 (2005)

  8. Zhang, Z.: Controlled teleportation of an arbitrary n-qubit quantum information using quantum secret sharing of classical message. Phys. Lett. A. 352(1), 55–58 (2006)

  9. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68(4), 042317 (2003)

  10. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A. 71(4), 044305 (2005)

  11. Gu, B., Zhang, C.Y., Cheng, G.S., Huang, Y.G.: Robust quantum secure direct communication with a quantum one-time pad over a collective-noise channel. Sci. China Phys. Mech. Astron. 54(5), 942–947 (2011)

  12. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

  13. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell's theorem. Phys. Rev. Lett. 68(5), 557–559 (1992)

  14. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A. 68(4), 042315 (2003)

  15. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91(5), 057901 (2003)

  16. Deng, F.G., Long, G.L.: Bidirectional quantum key distribution protocol with practical faint laser pulses. Phys. Rev. A. 70(1), 012311 (2004)

  17. Wang, X.B.: Beating the PNS attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

  18. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94(23), 230504 (2005)

  19. Gorbachev, V.N., Trubilko, A.I.: Quantum teleportation of an Einstein-Podolsy- Rosen pair using an entangled three-particle state. J. Exp. Theor. Phys. 91, 894–898 (2000)

  20. Wang, Y.H., Yu, C.S., Song, H.S.: Teleportation of an arbitrary multipartite GHZ-class state by one EPR pair. Chin. Phys. Lett. 23, 3142 (2006)

  21. Wang, X.W., Wang, Z.Y., Xia, L.X.: Scheme for teleportation of a multipartite quantum state by using a single entangled pair as quantum channel. Commun. Theor. Phys. 47, 257 (2007)

  22. Pathak, A., Banerjee, A.: Efficient quantum circuits for perfect and controlled teleportation of n-qubit non-maximally entangled states of generalized bell-type. Int. J. Quantum Inf. 9, 389–403 (2011)

  23. Zhao, N., Li, W.D.: Quantum teleportation of ten-qubit state based on the cluster state quantum channel. Int. J. Theor. Phys. 59, 2147–2154 (2020)

  24. Zha, X.W., Duan, Y.J., Qi, J.X., Song, H.Y., Zhang, Y.G.: Simple forms of Slocc equivalent four-qubit χ state. Int. J. Theor. Phys. 54, 2236–2239 (2015)

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of Shaanxi Province, China [grant no. 2020JQ-840], Scientific Research Program Funded by Shaanxi Provincial Education Department [grant no.20JK0907], the National Natural Science Foundation of China [grant no. 11947127].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhanli Cao.

Ethics declarations

Competing Interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Zhang, Y. & Qi, J. Optimal Schemes for Quantum Teleportation of Ten-Qubit State. Int J Theor Phys 60, 2995–3002 (2021). https://doi.org/10.1007/s10773-021-04875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04875-0

Keywords

Navigation