Skip to main content
Log in

Vacuum Rabi Splitting of a Single Nitrogen-Vacancy Center Coupled to a Photonic Crystal Nanocavity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a hybrid cavity quantum electrodynamics system consisting of a nitrogen-vacancy center driven by two-tone field in a photonic crystal nanocavity and investigate the hybrid system operating in the weak, intermediate, and strong coupling regimes of the light-matter interaction via comparing the coupling strength and the cavity decay rate between nitrogen-vacancy and photonic crystal nanocavity cavity. The results indicate that the strong coupling interaction manifested by vacuum Rabi splitting in the absorption with manipulating the coupling strength under different parameter regimes. This study provides a promising platform for understanding the dynamics of hybrid cavity quantum electrodynamics systems and paving the way toward on-chip nanophotonic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3

References

  1. Mabuchi, H., Doherty, A.C.: Cavity quantum electrodynamics: coherence in context. Science. 298, 1372–1377 (2002)

    Article  ADS  Google Scholar 

  2. Vahala, K.J.: Optical microcavities. Nature. 424, 839–846 (2003)

    Article  ADS  Google Scholar 

  3. Monroe, C.: Quantum information processing with atoms and photons. Nature. 416, 238–246 (2002)

    Article  ADS  Google Scholar 

  4. Guerlin, C., Bernu, J., Deleglise, S., Sayrin, C., Gleyzes, S., Kuhr, S., Haroche, S.: Progressive field-state collapse and quantum non-demolition photon counting. Nature. 448, 889–893 (2007)

    Article  ADS  Google Scholar 

  5. Chen, H.J.: Auxiliary-cavity-assisted vacuum Rabi splitting of a semiconductor quantum dot in a photonic crystal nanocavity. Photonics Res. 6, 1171–1176 (2018)

    Article  Google Scholar 

  6. Ota, Y., Takamiya, D., Ohta, R., Takagi, H., Kumagai, N., Iwamoto, S., Arakawa, Y.: Large vacuum Rabi splitting between a single quantum dot and an H0 photonic crystal nanocavity. Appl. Phys. Lett. 112, 093101 (2018)

    Article  ADS  Google Scholar 

  7. Ota, Y., Shirane, M., Nomura, M., Kumagai, N., Ishida, S., Iwamoto, S., Arakawa, Y.: Vacuum Rabi splitting with a single quantum dot embedded in a H1 photonic crystal nanocavity. Appl. Phys. Lett. 94, 033102 (2009)

    Article  ADS  Google Scholar 

  8. Englund, D., Shields, B., Rivoire, K., Hatami, F., Vuckovic, J., Park, H., Lukin, M.D.: Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. Nano Lett. 10, 3922–3926 (2010)

    Article  ADS  Google Scholar 

  9. Li, J., Yu, R., Ding, C., Wu, Y.: Optical bistability and four-wave mixing with a single nitrogen-vacancy center coupled to a photonic crystal nanocavity in the weak-coupling regime. Opt. Express. 22, 15024–15038 (2014)

    Article  ADS  Google Scholar 

  10. Li, J.H., Yu, R., Yang, X.X.: Achieving slow and fast light with high transmission by nanodiamond nitrogen-vacancy center coupling to photonic crystal cavity. J. Appl. Phys. 114, 124312 (2013)

    Article  ADS  Google Scholar 

  11. Liu, S., Yu, R., Li, J., Wu, Y.: Creation of quantum entanglement with two separate diamond nitrogen vacancy centers coupled to a photonic molecule. J. Appl. Phys. 114, 244306 (2013)

    Article  ADS  Google Scholar 

  12. Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M., Oh, C.H.: Quantum dynamics and quantum state transfer between separated nitrogen-vacancy centers embedded in photonic crystal cavities. Phys. Rev. A. 84, 043849 (2011)

    Article  ADS  Google Scholar 

  13. Song, B.S., Noda, S., Asano, T., Akahane, Y.: Ultra-high-Q photonic double-heterostructure nanocavity. Nat. Mater. 4, 207–210 (2005)

    Article  ADS  Google Scholar 

  14. Faraon, A., Santori, C., Huang, Z., Acosta, V.M., Beausoleil, R.: Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. Phys. Rev. Lett. 109, 033604 (2012)

    Article  ADS  Google Scholar 

  15. Akahane, Y., Asano, T., Song, B.S., Noda, S.: High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature. 425, 944–947 (2003)

    Article  ADS  Google Scholar 

  16. Noda, S., Fujita, M., Asano, T.: Spontaneous-emission control by photonic crystals and nanocavities. Nat. Photonics. 1, 449–458 (2007)

    Article  ADS  Google Scholar 

  17. Majumdar, A., Kim, J., Vuckovic, J., Wang, F.: Electrical control of silicon photonic crystal cavity by graphene. Nano Lett. 13, 515–518 (2013)

    Article  ADS  Google Scholar 

  18. Milde, F., Knorr, A., Hughes, S.: Role of electron-phonon scattering on the vacuum Rabi splitting of a single-quantum dot and a photonic crystal nanocavity. Phys. Rev. B. 78, 035330 (2008)

    Article  ADS  Google Scholar 

  19. Nomura, M., Ota, Y., Kumagai, N., Iwamoto, S., Arakawa, Y.: Large vacuum Rabi splitting in single self-assembled quantum dot-nanocavity system. Appl. Phys. Express. 1, 072102 (2008)

    Article  ADS  Google Scholar 

  20. Jia, L., Bita, I., Thomas, E.L.: Impact of geometry on the TM photonic band gaps of photonic crystals and quasicrystals. Phys. Rev. Lett. 107, 193901 (2011)

    Article  ADS  Google Scholar 

  21. Stoneham, M.: Is a room-temperature, solid-state quantum computer mere fantasy. Physics. 2, 34 (2009)

    Article  Google Scholar 

  22. Neumann, P., Beck, J., Steiner, M., Rempp, F., Fedder, H., Hemmer, P.R., Jelezko, F.: Single-shot readout of a single nuclear spin. Science. 329, 542–544 (2010)

    Article  ADS  Google Scholar 

  23. Manson, N.B., Harrison, J.P., Sellars, M.J.: Nitrogen-vacancy center in diamond: model of the electronicstructure and associated dynamics. Phys. Rev. B. 74, 104303 (2006)

    Article  ADS  Google Scholar 

  24. Young, A., Hu, C.Y., Marseglia, L., Harrison, J.P., O'Brien, J.L., Rarity, J.G.: Cavity enhanced spin measurement of the ground state spin of an nv center in diamond. New J. Phys. 11, 013007 (2009)

    Article  ADS  Google Scholar 

  25. Carter, S.G., Sweeney, T.M., Kim, M., Kim, C.S., Solenov, D., Economou, S.E., Gammon, D.: Quantum control of a spin qubit coupled to a photonic crystal cavity. Nat. Photonics. 7, 329–334 (2013)

    Article  ADS  Google Scholar 

  26. Li, X.X., Li, P.B., Ma, S.L., Li, F.L.: Preparing entangled states between two NV centers via the damping of nanomechanical resonators. Sci. Rep. 7, 1–9 (2017)

    Article  ADS  Google Scholar 

  27. Chen, Q., Yang, W., Feng, M., Du, J.: Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators. Phys. Rev. A. 83, 054305 (2011)

    Article  ADS  Google Scholar 

  28. Barclay, P.E., Fu, K.M., Santori, C., Beausoleil, R.G.: Hybrid photonic crystal cavity and waveguide for coupling to diamond NV-centers. Opt. Express. 17, 9588–9601 (2009)

    Article  ADS  Google Scholar 

  29. Wolters, J., Schell, A.W., Kewes, G., Nüsse, N., Schoengen, M., Döscher, H., Benson, O.: Enhancement of the zero-phonon line emission from a single nitrogen vacancy center in a nanodiamond via coupling to a photonic crystal cavity. Appl. Phys. Lett. 97, 141108 (2010)

    Article  ADS  Google Scholar 

  30. Riedrich-Möller, J., Pezzagna, S., Meijer, J., Pauly, C., Mücklich, F., Markham, M., Becher, C.: Nanoimplantation and Purcell enhancement of single nitrogen-vacancy centers in photonic crystal cavities in diamond. Appl. Phys. Lett. 106, 221103 (2015)

    Article  ADS  Google Scholar 

  31. Schukraft, M., Zheng, J., Schröder, T., Mouradian, S.L., Walsh, M., Trusheim, M.E., Englund, D.R.: Precision nanoimplantation of nitrogen vacancy centers into diamond photonic crystal cavities and waveguides. APL Photonics. 1, 020801 (2016)

    Article  ADS  Google Scholar 

  32. Schröder, T., Walsh, M., Zheng, J., Mouradian, S., Li, L., Malladi, G., Englund, D.: Scalable fabrication of coupled NV center - photonic crystal cavity systems by self-aligned N ion implantation. Opt. Mater. Express. 7, 1514–1524 (2017)

    Article  ADS  Google Scholar 

  33. Asakawa, K., Sugimoto, Y., Watanabe, Y., Ozaki, N., Mizutani, A., Takata, Y., Baets, R.: Photonic crystal and quantum dot technologies for all-optical switch and logic device. New J. Phys. 8, 208 (2006)

    Article  ADS  Google Scholar 

  34. Rabl, P., Cappellaro, P., Dutt, M.G., Jiang, L., Maze, J.R., Lukin, M.D.: Strong magnetic coupling between an electronic spin qubit and a mechanical resonator. Phys. Rev. B. 79, 041302 (2009)

    Article  ADS  Google Scholar 

  35. Boyd, R.W.: Nonlinear optics, p. 225. Academic, San Diego (1992)

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos:11647001 and 11804004), Project funded by China Postdoctoral Science Foundation (No:2020 M681973) and Anhui Provincial Natural Science Foundation (No:1708085QA11).

Funding

Hua-Jun Chen is supported by the National Natural Science Foundation of China (Nos:11647001 and 11804004), Project funded by China Postdoctoral Science Foundation (No:2020 M681973) and Anhui Provincial Natural Science Foundation (No:1708085QA11).

Author information

Authors and Affiliations

Authors

Contributions

Hua-Jun Chen developed the idea of the study, established the model establishment, and gave constructive discussions. Jiang-Yong Yang was a major contributor in writing the manuscript, and finished the revised manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huajun Chen.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, H. Vacuum Rabi Splitting of a Single Nitrogen-Vacancy Center Coupled to a Photonic Crystal Nanocavity. Int J Theor Phys 60, 3188–3196 (2021). https://doi.org/10.1007/s10773-021-04874-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04874-1

Keywords

Navigation