Skip to main content
Log in

Transformation of Photon-Added Coherent States Via Conditional Measurements on a Beam Splitter

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a new non-classical state via the photon-added coherent state based on a beam splitter with a zero-photon detector. An interesting finding is that new state and photon-added coherent state have similar expressions, but the amplitude and normalization coefficient of new state have been changed by the transmittance of beam splitter. The relationship between the output quantum state, the input state and the optical beam splitter is also discussed via detection efficiency, fidelity, signal gain,SNR, squeezing effect and sub-Poisson distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2.
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Meng, X.G., Li, K.C., Wang, J.S., Zhang, X.Y., Zhang, Z.T., Yang, Z.S., Liang, B.L.: Continuous-variable entanglement and Wigner-function negativity via adding or subtracting photons. Ann. Phys.-Berlin. 532(5), 1900585-1-14 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  2. Meher, N., Sivakumar, S.: Enhancing phase sensitivity with number state filtered coherent states. Quantum Inf. Process. 19(2), 1–13 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  3. Glauber, J.: R., Coherent and incoherent states of the radiation field. Phys. Rev. 131(6), 2766–2788 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hillery, M.: Nonclassical distance in quantum optics. Phys. Rev. A. 35(2), 725–732 (1987)

    Article  ADS  Google Scholar 

  5. Lee, C.T.: Theorem on nonclassical states. Phys. Rev. A. 52(4), 3374–3376 (1995)

    Article  ADS  Google Scholar 

  6. Dodonov, V.V.: 'Nonclassical' states in quantum optics: a 'squeezed' review of the first 75 years. J. Opt. B-Quantum S. O. 4(1), R1–R33 (2002)

    Article  MathSciNet  Google Scholar 

  7. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A. 43(1), 492–497 (1991)

    Article  ADS  Google Scholar 

  8. Dodonov, V.V., Marchiolli, M.A., Korennoy, Y.A., Man'ko, V.I., Moukhin, Y.A.: Dynamical squeezing of photon-added coherent states. Phys. Rev. A. 58(5), 4087–4094 (1998)

    Article  ADS  Google Scholar 

  9. Zavatta, A., Viciani, S., Bellini, M.: Quantum-to-classical transition with single-photon-added coherent states of light. Science. 306(5696), 660–662 (2004)

    Article  ADS  Google Scholar 

  10. Sivakumar, S.: Photon-added coherent states as nonlinear coherent states. J. Phys. a-Math Gen. 32(18), 3441–3447 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  11. Abbasi, O., Jafari, A.: Four-photon nonlinear coherent states. J. Mod. Optic. 64(1), 32–45 (2016)

    Article  ADS  Google Scholar 

  12. Wang, J.S., Feng, J., Liu, T.K., Zhan, M.S.: A new kind of even and odd nonlinear coherent states and their quantum statistical properties. Acta Phys. Sin-Ch Ed. 51(11), 2509–2513 (2002)

    Google Scholar 

  13. Meng, X.G., Wang, Z., Fan, H.Y., Wang, J.S.: Nonclassicality and decoherence of photon-subtracted squeezed vacuum states. J Opt Soc Am B. 29(11), 3141–3149 (2012)

    Article  ADS  Google Scholar 

  14. Ban, M.: Photon statistics of conditional output states of lossless beam splitter. J Mod Optic. 43(6), 1281–1303 (1996)

    Article  ADS  Google Scholar 

  15. Escher, B. M.; Avelar, A. T.; Baseia, B.: Synthesis of arbitrary Fock states via conditional measurement on beam splitters. Phys Rev A 72(4) (2005)

  16. Prakash, H., Mishra, D.K.: Quantum analysis of a beam splitter with second-order nonlinearity and generation of nonclassical light. J. Opt. Soc. Am. B. 33(7), 1552 (2016)

    Article  ADS  Google Scholar 

  17. Wang, D., Huang, X.S., Tang, X.B., Zhang, Q.: Continuous variable entanglement measurement without phase-locking. J. Mod. Optic. 59(1), 53–56 (2012)

    Article  ADS  Google Scholar 

  18. Hu, L.Y., Fan, H.Y.: Four-mode coherent entangled state as an entanglement of two bipartite coherent entangled states. J. Mod. Optic. 55(7), 1065–1075 (2008)

    Article  ADS  Google Scholar 

  19. Chatterjee, A.; Dhar, H. S.; Ghosh, R.: Nonclassical properties of states engineered by superpositions of quantum operations on classical states. J Phys B-at Mol Opt. 45(20) (2012)

  20. Meng, X.-G., Wang, J.-S., Yang, Z.-S., Zhang, X.-Y., Zhang, Z.-T., Liang, B.-L., Li, K.-C.: Squeezed Hermite polynomial state: nonclassical features and decoherence behavior. J. Optics-Uk. 22(1), 015201-1-11 (2019)

    ADS  Google Scholar 

  21. Dakna, M., Anhut, T., Opatrny, T., Knoll, L., Welsch, D.G.: Generating Schrodinger-cat-like states by means of conditional measurements on a beam splitter. Phys. Rev. A. 55(4), 3184–3194 (1997)

    Article  ADS  Google Scholar 

  22. Podoshvedov, S.A., Kim, J., Lee, J.H.: Generation of a displaced qubit and entangled displaced photon state via conditional measurement and their properties. Opt. Commun. 281(14), 3748–3754 (2008)

    Article  ADS  Google Scholar 

  23. Dakna, M., Knoll, L., Welsch, D.G.: Photon-added state preparation via conditional measurement on a beam splitter. Opt. Commun. 145(1–6), 309–321 (1998)

    Article  ADS  Google Scholar 

  24. Allevi, A., Andreoni, A., Bondani, M., Genoni, M.G., Olivares, S.: Reliable source of conditional states from single-mode pulsed thermal fields by multiple-photon subtraction. Phys. Rev. A. 82(1), 013816-1-8 (2010)

    Article  ADS  Google Scholar 

  25. Olivares, S., Paris, M.G.A.: Squeezed Fock state by inconclusive photon subtraction. J. Optics B: Quantum Semiclass. Optics. 7(12), S616–S621 (2005)

    Article  ADS  Google Scholar 

  26. Xia, Y., Hu, L., Zhang, H., Zhang, H.: From coherent state representation to unitary operators via the IWOP technique. Optik. 178, 372–378 (2019)

    Article  ADS  Google Scholar 

  27. Fan, H.Y., Zaidi, H.R.: Application of Iwop technique to the generalized Weyl correspondence. Phys. Lett. A. 124(6–7), 303–307 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  28. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. Optic. 41(12), 2315–2323 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  29. Li, D.X., Xu, W., Guo, Y.F., Xu, Y.: Fluctuations induced extinction and stochastic resonance effect in a model of tumor growth with periodic treatment. Phys. Lett. A. 375(5), 886–890 (2011)

    Article  ADS  Google Scholar 

  30. Wang, J., Meng, X., Zhang, X.: Nonclassicality of photon-modulated atomic coherent states in the Schwinger bosonic realization. Chinese Phys. B. 29(12), 124213 (2020) -1-6

    Article  ADS  Google Scholar 

  31. Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted classical capacity of noisy quantum channels. Phys. Rev. Lett. 83(15), 3081–3084 (1999)

    Article  ADS  Google Scholar 

  32. Lee, J., Kim, J., Nha, H.: Demonstrating higher-order nonclassical effects by photon-added classical states: realistic schemes. J. Opt. Soc. Am. B. 26(7), 1363–1369 (2009)

    Article  ADS  Google Scholar 

  33. Mandel, L.: Sub-Poissonian photon statistics in resonance fluorescence. Opt. Lett. 4(7), 205–207 (1979)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2019A0688).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, G. Transformation of Photon-Added Coherent States Via Conditional Measurements on a Beam Splitter. Int J Theor Phys 60, 2333–2344 (2021). https://doi.org/10.1007/s10773-021-04859-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04859-0

Keywords

Navigation