Skip to main content
Log in

The Role of Phase-Dependent Atomic Coherence on Refractive Index of Atomic Medium for Energy Harvesting Systems

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum enhancement of the optical behavior for V −type open atomic system is examined analytically. With consideration of the system which contain N number of atoms, it is derived that the evolution of the atomic variable evolution with respect to time. At steady state, the optical properties of the system have been analyzed. The phase between the upper doublet levels is influencing the optical parameters change in the system. It is observed that for small values of the phase between the upper doublet energy states, the better refractive index of the atomic medium. The refractive index gets the peak value near to the resonance frequency of the probe field. The properties of the re-emitted light from ensemble of three-level atoms have been analyzed in details. In this regard, it is observed that the height of the power spectrum increased while the number of atoms are large in the sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jen, H., Wang, D.: Theory of electromagnetically induced transparency in strongly correlated quantum gases. Phys. Rev. A 87, 061802 (2013)

    Article  ADS  Google Scholar 

  2. Lijun, M., Slattery, O., Tang, X.: Optical quantum memory based on electromagnetically induced transparency. J. Opt. 19, 043001 (2017)

    Article  ADS  Google Scholar 

  3. Novikova1, I., Walsworth, R., Xiao, Y.: Electromagnetically induced transparency-based slow and stored light in warm atoms. Laser Photonics Rev. 6, 333–353 (2012)

  4. Kolchin, P.: Electromagnetically-induced-transparency-based paired photon generation. Phys. Rev. A 75, 033814 (2007)

    Article  ADS  Google Scholar 

  5. Fleischhauer, M., Lukin, M.: Dark-state polaritons in electromagnetically induced transparency. Phys. Rev. Lett. 84, 5094–5097 (2000)

    Article  ADS  Google Scholar 

  6. Fleischhauer, M.: Correlation of high-frequency phase fluctuations in electromagnetically induced transparency. Phys. Rev. Lett. 72, 989–992 (1994)

    Article  ADS  Google Scholar 

  7. Zhang, J., Cai, J., Bai, Y., Gao, J., Zhu, S.: Optimization of the noise property of delayed light in electromagnetically induced transparency. Phys. Rev. A 76, 033814 (2007)

    Article  ADS  Google Scholar 

  8. Phillips, M., Wang, H.: Spin coherence and electromagnetically induced transparency via exciton correlations. Phys. Rev. Lett. 89, 186401–3 (2002)

    Article  ADS  Google Scholar 

  9. Yang, X., Xiao, M: Electromagnetically induced entanglement. Sci. Rep. 5, 13609 (2015)

    Article  ADS  Google Scholar 

  10. He, X., Wang, L., Wang, J., Tian, X., Jiang, J., Geng, Z.: Electromagnetically induced transparency in planar complementary metamaterial for refractive index sensing applications. J. Phys. D: Appl. Phys. 46, 365302 (2013)

    Article  Google Scholar 

  11. Sevincli, S., Ates, C., Pohl, T., Schempp, H., Hofmann, C., Gunter, G., Amthor, T., Weidemuller, M., Pritchard, J., Maxwell, D., Gauguet, A., Weatherill, K., Jones, M., Adams, C.: Quantum interference in interacting three-level Rydberg gases: coherent population trapping and electromagnetically induced transparency. J. Phys. B: At. Mol. Opt. Phys. 44, 184018 (2011)

    Article  ADS  Google Scholar 

  12. Andre, A., Eisaman, M., Walsworth, R., Zibrov1, A., Lukin, M.: Quantum control of light using electromagnetically induced transparency. J. Phys. B: At. Mol. Opt. Phys. 38, S589–S604 (2005)

  13. Li, Y., Xiao, M.: Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A 51, 4959–4961 (1995)

    Article  ADS  Google Scholar 

  14. Hamedi, H., Ruseckas, J., Juzeliunas, G.: Exchange of optical vortices using an electromagnetically-induced-transparency–based four-wave-mixing setup. Phys. Rev. A 98, 013840 (2018)

    Article  ADS  Google Scholar 

  15. Cruz, L. S., Felinto, D., Gomez, J., Martinelli, M., Valente, P., Lezama, A., Nussenzveig, P.: Laser-noise-induced correlations and anti-correlations in electromagnetically induced transparency. Eur. Phys. J. D 41, 531–539 (2007)

    Article  ADS  Google Scholar 

  16. Hetet, G., Peng, A., Johnsson, M., Hope, J., Lam, P.: Characterization of electromagnetically-induced-transparency-based continuous-variable quantum memories. Phys. Rev. A 77, 012323 (2008)

    Article  ADS  Google Scholar 

  17. Daltont, B., Knight, P.: The effects of laser field fluctuations on coherent population trapping. J. Phys. B: At. Mol. Phys. 15, 3997–4015 (1982)

    Article  ADS  Google Scholar 

  18. Barantsev, K., Popov, E., Litvinov, A.: Line shape of coherent population trapping resonance in the ∧-scheme under Ramsey-type interrogation in an optically dense medium. Quantum Electron. 48, 615–620 (2018)

    Article  ADS  Google Scholar 

  19. Dalton, B., Mcduff, R.: Coherent population trapping Two unequal phase fluctuating laser fields. Opt. Acta 32, 61–70 (1985)

    Article  ADS  Google Scholar 

  20. Imamoglu, A.: Coherent population trapping in a single-hole-charged quantum dot. Phys. Stat. Sol. 243, 3725–3729 (2006)

    Article  ADS  Google Scholar 

  21. Xu, Q., Ming, X., HDeng, H., Ren, T., Shao, J., Chen, J., Zhang, R., Peng, L.: Simultaneous squeezing of coherent fields using coherent population trapping. Laser Phys. 25, 015201 (2015)

    Article  ADS  Google Scholar 

  22. Barantsev, K., Litvinov, A., Popov, E.: Intermode correlation properties of laser radiation propagating through a gas cell with alkali atoms under conditions of a coherent population trapping resonance. J. Exp. Theor. Phys. 125, 993–1004 (2017)

    Article  ADS  Google Scholar 

  23. Huang, M., Camparo, J.: Coherent population trapping under periodic polarization modulation: Appearance of the CPT doublet. Phys. Rev. A 85, 012509 (2012)

    Article  ADS  Google Scholar 

  24. Il’ichev, L.: Analysis of correlations between atoms in terms of bivectors under coherent population trapping conditions. J. Exp. Theor. Phys. 102, 570–576 (2006)

    Article  ADS  Google Scholar 

  25. Accardi, L., Kozyrev, S.: Coherent population trapping and partial decoherence in the stochastic limit. Int. J. Theor. Phys. 45, 677–693 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Huang, Z., Situ, H.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Sadeghi, S., van Driel, H., Fraser, J.: Coherent control and enhancement of refractive index in an asymmetric double quantum well. Phys. Rev. B 62, 15386–15389 (2000)

    Article  ADS  Google Scholar 

  28. Coso, R., Solis, J.: Relation between nonlinear refractive index and third-order susceptibility in absorbing media. J. Opt. Soc. Am. B 21, 640–644 (2004)

    Article  ADS  Google Scholar 

  29. Abouraddy, A., Nasr, M., Saleh, B., Sergienko, A., Teich, M.: Quantum-optical coherence tomography with dispersion cancellation. Phys. Rev. A 65, 053817 (2002)

    Article  ADS  Google Scholar 

  30. Dodonov, V., Klimov, A., Nikonov, D.: Quantum phenomena in nonstationary media. Phys. Rev. A 47, 4422–4429 (1993)

    Article  ADS  Google Scholar 

  31. Bons, P., Haas, R., Jong, D., Groot, A., van der Straten, P.: Quantum enhancement of the index of refraction in a Bose-Einstein condensate. Phys. Rev. Lett. 116, 173602 (2016)

    Article  ADS  Google Scholar 

  32. Scully, M.: Enhancement of the index of refraction via quantum coherence. Phys. Rev. Lett. 67, 1855–1858 (1991)

    Article  ADS  Google Scholar 

  33. Xu, H., Fu, A., Qin, L., Jin, S.: Refractive index enhancement without absorption in a quantum well system. Superlattices Microstruct. 58, 53–59 (2013)

    Article  ADS  Google Scholar 

  34. Jamshidnejad, M., Vaezzadeh, M., Soleimani, H., Asadpour, S.: Enhancement of refractive index with amplification in an InGaN/GaN quantum dot nanostructure. Laser Phys. Lett. 13, 045204 (2016)

    Article  ADS  Google Scholar 

  35. Fleischhauer, M., Keitel, C., Scully, M., Su, C., Ulrich, B., Zhu, S.: Resonantly enhanced refractive index without absorption via atomic coherence. Phys. Rev. A 46, 1468–1487 (1992)

    Article  ADS  Google Scholar 

  36. Caspani, L., Kaipurath, R., Clerici, M., Ferrera, M., Roger, T., Kim, J., Kinsey, N., Pietrzyk, M., Falco, A., Shalaev, V., Boltasseva, A., Faccio, D.: Enhanced nonlinear refractive index in 𝜖 − near-zero materials. Phys. Rev. Lett. 116, 233901 (2016)

    Article  ADS  Google Scholar 

  37. Yavuz, D.: Refractive index enhancement in a far-off resonant atomic system. Phys. Rev. Lett. 95, 223601 (2005)

    Article  ADS  Google Scholar 

  38. Ramakrishna, S.: Physics of negative refractive index materials. Rep. Prog. Phys. 68, 449–521 (2005)

    Article  ADS  Google Scholar 

  39. Foteinopoulou, S., Economou, E., Soukoulis, E.: Refraction in media with a negative refractive index. Phys. Rev. Lett. 90, 107402 (2003)

    Article  ADS  Google Scholar 

  40. SUN Wen-Feng, S., Xin-Ke, W., Yan, Z.: Measurement of refractive index for high reflectance materials with terahertz time domain reflection spectroscopy. Chin. Phys. Lett. 26, 114210 (2009)

    Article  ADS  Google Scholar 

  41. Oktel, M.: Electromagnetically induced left-handedness in a dense gas of three-level atoms. Phys. Rev. A 70, 053806 (2004)

    Article  ADS  Google Scholar 

  42. Imistov, A., Caputo, J.: Extremely short electromagnetic pulses in a resonant medium with a permanent dipole moment. Opt. Spectrosc. 94, 245–250 (2003)

    Article  ADS  Google Scholar 

  43. Zabolotskii, A.: Few-cycle solitons in a dispersive medium with a permanent dipole moment. Phys. Rev. E 102, 012214 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  44. Kolesik, M., Brown, J., Teleki, A., Jakobsen, P., Moloney, J., Wright, E.: Metastable electronic states and nonlinear response for high-intensity optical pulses. Optica 1, 323–331 (2014)

    Article  ADS  Google Scholar 

  45. Manka, A., Dowling, J., Bowden, C.: Piezophotonic switching due to local field effects in a coherently prepared medium of three-level atoms. Phys. Rev. Lett. 73, 1789–1792 (1994)

    Article  ADS  Google Scholar 

  46. Davuluri, S., Zhu, S.: Interference via dephasing effect in upper coupled three-level atoms. Phys. Scr. 91, 013008 (2016)

    Article  ADS  Google Scholar 

  47. Moseley, R., Shepherd, S., Fulton, D., Sinclair, B., Dunn, M.: Two-photon effects in continuous-wave electromagnetically-induced transparency. Opt. Commun. 119, 61–68 (1995)

    Article  ADS  Google Scholar 

  48. Hu, X., Xu, J.: Enhanced index and negative dispersion without absorption in driven cascade media. Phys. Rev. A 69, 043812 (2004)

    Article  ADS  Google Scholar 

  49. Davuluri, S.: Frequency up-conversion in lasing without inversion. Coherent Opt. Phenom. 2, 1–5 (2014)

    ADS  Google Scholar 

  50. Ficek, Z., Dalton, B., Knight, P.: Fluorescence intensity and squeezing in a driven three-level atom: Ladder case. Phys. Rev. A 51, 4062–4077 (1995)

    Article  ADS  Google Scholar 

  51. Faghihi, M., Tavassoly, M., Hooshmandas, M.: Entanglement dynamics and position-momentum entropic uncertainty relation of a ∧-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. J. Opt. Soc. Am. B 30, 1109–1117 (2013)

    Article  ADS  Google Scholar 

  52. He, Y., Chen, R., Wang, F., Pfeiffer, A., Zhang, Y., Cui, Z., Ding, J., Liu, Z., Hu, B.: Macroscopic transient absorption in a V-type three-level system. J. Phys. B: At. Mol. Opt. Phys. 53, 175601 (2020)

    Article  ADS  Google Scholar 

  53. Mousavi, S., Safari1, L., Mahmoudi, M., Sahrai, M.: Effect of quantum interference on the optical properties of a three-level V-type atomic system beyond the two-photon resonance condition. J. Phys. B: At. Mol. Opt. Phys. 43, 165501 (2010)

  54. Li, P., Nakajima, T., Ning, X.: Spectral properties of a V-type three-level atom driven by two bichromatic fields. Phys. Rev. A 74, 043408 (2006)

    Article  ADS  Google Scholar 

  55. Li, J.: Coherent control of optical bistability in a microwave-driven V-type atomic system. Physica D 228, 148–152 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  56. Scully, M., Zumbairy, M.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  57. Olson, A., Mayer, S.: Electromagnetically induced transparency in rubidium. Am. J. Phys. 77, 116–121 (2009)

    Article  ADS  Google Scholar 

  58. Alebachew, E., Fesseha, K.: Interaction of a two-level atom with squeezed light. Optics Communications 271, 154–161 (2007)

    Article  ADS  Google Scholar 

  59. Parkins, A. S.: Resonance fluorescence of a two-level atom in a two-mode squeezed vacuum. Phys. Rev. A 42, 6873–6883 (1990)

    Article  ADS  Google Scholar 

  60. collab=Vladimirova,Y., Klimov,V., Pastukhov, V., Zadkov, M.: Modification of two-level-atom resonance fluorescence near a plasmonic nanostructure. Phys. Rev. A 85, 053408 (2012)

    Article  ADS  Google Scholar 

  61. Tesfa, S.: Coherently driven two-level atom coupled to a broadband squeezed vacuum. J. Mod. Opt. 54, 1759–1777 (2006)

    Article  ADS  MATH  Google Scholar 

  62. Tesfa, S.: Effect of decoherence on the radiative and squeezing properties in a coherently driven trapped two-level atom. J. Mod. Opt. 55, 1587–1602 (2008)

    Article  ADS  MATH  Google Scholar 

  63. Kornblith, R., Eberlys, J.: Polarisation dependence in three-level atom resonance fluorescence. J. Phys. B: Atom. Molec. Phys. 11, 1545–1556 (1978)

    Article  ADS  Google Scholar 

  64. Li, G., Wu, S., Zhou, P.: Resonance fluorescence spectrum of a three-level atom driven by coherent and stochastic fields. Eur. Phys. J. D 15, 267–277 (2001)

    Article  ADS  Google Scholar 

  65. Xu, Q., Yin, J., Hu, X.: Highly monochromatic fluorescence via simulation of vacuum-induced coherence. Eur. Phys. J. D 47, 271–276 (2008)

    Article  ADS  Google Scholar 

  66. Ferguson, M., Ficek, Z., Dalton, B.: Resonance fluorescence spectra of three-level atoms in a squeezed vacuum. Phys. Rev. A 54, 2379–2390 (1996)

    Article  ADS  Google Scholar 

  67. Toyli, D., Eddis, A., Boutin, S., Puri, S., Hover, D., Bolkhovsky, V., Oliver, W., Blais, A., Siddiqi, I.: Resonance fluorescence from an artificial atom in squeezed vacuum. Phys. Rev. X 6, 031004 (2016)

    Google Scholar 

  68. Lax, M.: Quantum noise. Xl. Multitime correspondence between quantum and classical stochastic processes. Phys. Rev. 172, 350 (1968)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sitotaw Eshete.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eshete, S. The Role of Phase-Dependent Atomic Coherence on Refractive Index of Atomic Medium for Energy Harvesting Systems. Int J Theor Phys 60, 2283–2299 (2021). https://doi.org/10.1007/s10773-021-04848-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04848-3

Keywords

Navigation