Skip to main content
Log in

Study of Bs\(D_{s}^{*} \tau \bar {\nu }\) Decay in the Aligned Two-Higgs-Doublet Model and Vector Leptoquark Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, with the form factors calculated in the relativistic quark model, Bs\(D_{s}^{*} \tau \bar {\nu }\) decay is studied in the aligned two-Higgs-doublet model (A2HDM) and vector leptoquark model. Using the parameter spaces obtained from flavor constraints, we calculate the branching ratio \({\mathscr{B}}(B_{s}\to D_{s}^{*} \tau \bar {\nu })\) and the integrated ratio \(R_{D_{s}^{*}}\) within the standard model (SM), A2HDM and vector leptoquark model. Moreover, we also show the effects of A2HDM and vector leptoquark model on some observables, such as the differential branching ratio \(\frac {d{\mathscr{B}}}{dq^{2}}\), the differential ratio \(R_{D_{s}^{*}}(q^{2})\), the lepton-side forward-backward asymmetry AFB(q2), the longitudinal polarization fractions \(P_{L}^{\tau }(q^{2})\) and \(P_{L}^{D_{s}^{*}}(q^{2})\). We find, (i) the SM results of \({\mathscr{B}}(B_{s}\to D_{s}^{*} \tau \bar {\nu })\) can be enhanced about 2σ by the contributions of both A2HDM and vector leptoquark model, which can enhance the SM results of \(R_{D_{s}^{*}}\) by about 5σ and 7σ, respectively. (ii)all of these considered observables are sensitive to the A2HDM effects. However, the vector leptoquark model effects are trivial for AFB(q2), \(P_{L}^{\tau }(q^{2})\) and \(P_{L}^{D_{s}^{*}}(q^{2})\) with the exception of other considered observables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lees, J. P., et al., BaBar Collaboration: Phys. Rev. Lett. 109, 101802. arXiv:1205.5442[hep-ph] (2012)

  2. Lees, J. P., et al., BaBar Collaboration: Phys. Rev. D 88, 072012. arXiv:1303.0571[hep-ph] (2013)

  3. Huschle, M., et al., Belle Collaboration: Phys. Rev. D 92, 072014. arXiv:1507.03233[hep-ph] (2015)

  4. Sato, Y., et al., Belle Collaboration: Phys. Rev. D 94, 072007. arXiv:1607.07923[hep-ph] (2016)

  5. Hirose, S., et al., Belle Collaboration: Phys. Rev. Lett. 118, 211801. arXiv:1612.00529[hep-ph] (2017)

  6. Abdesselam, A., et al., Belle Collaboration: arXiv:1904.08794[hep-ph]

  7. Caria, G., et al., Belle Collaboration: arXiv:1910.05864[hep-ph]

  8. Aaij, R., et al., LHCb Collaboration: Phys. Rev. Lett. 115, 111803. arXiv:1506.08614[hep-ph] (2015)

  9. Aaij, R., et al., LHCb Collaboration: Phys. Rev. Lett. 120, 171802. arXiv:1708.08856[hep-ph] (2018)

  10. Amhis, Y., et al., HFAV Collaboration: Eur. Phys. J. C 77, 895. arXiv:1612.07233[hep-ph], and updates at https://hflav-eos.web.cern.ch/hflav-eos/semi/spring19/html/RDsDsstar/RDRDs.html (2017)

  11. Bigi, D., Gambino, P.: Phys. Rev. D 94, 094008. arXiv:1606.08030[hep-ph] (2016)

  12. Bernlochner, F. U., Ligeti, Z., Papucci, M., Robinson, D.: Phys. Rev. D 95, 115008. arXiv:1703.05330[hep-ph] (2017)

  13. Jaiswal, S., Nandi, S., Patra, S. K.: JHEP 1712, 060. arXiv:1707.09977[hep-ph] (2017)

  14. Bigi, D., Gambino, P., Schacht, S.: JHEP 1711, 061. arXiv:1707.09509[hep-ph] (2017)

  15. Aaij, R., et al., LHCb Collaboration: Phys. Rev. Lett. 120, 121801. arXiv:1711.05623[hep-ph] (2018)

  16. Zhao, S. M., Liu, X., Li, S. J.: Eur. Phys. J. C 51, 601, [hep-ph/0612008] (2007)

  17. Bazavov, A., et al., MILC Collaboration: Rev. Mod. Phys. 82, 1349 (2010). arXiv:0903.3598[hep-lat]

  18. Li, R. H., Lü, C. D., Wang, Y. M.: Phys. Rev. D 80, 014005. arXiv:0905.3259[hep-ph] (2009)

  19. Li, G., Shao, F. L., Wang, W.: Phys. Rev. D 82, 094031. arXiv:1008.3696[hep-ph] (2010)

  20. Chen, X. J., Fu, H. F., Kim, C. S., Wang, G. L.: J. Phys. G 9, 045002. arXiv:1106.3003[hep-ph] (2012)

  21. Na, H., Monahan, C. J., Daveis, C. T. H.: Phys. Rev. D 86, 034506. arXiv:1202.4914[hep-lat] (2012)

  22. Bailey, J. A., et al.: Phys. Rev. D 85, 114502. Erratum: Phys. Rev. D 86, 039904 (2012). arXiv:1202.6346[hep-lat] (2012)

  23. Atoui, M., Mornas, V., Beirevic, D., Sanfilippo, F.: Eur. Phys. J. C 74, 2861. arXiv:1310.5238[hep-lat] (2014)

  24. Fan, Y. Y., Wang, W. F., Xiao, Z. J.: Phys. Rev. D 89, 014030. arXiv:1311.4965[hep-ph] (2014)

  25. Atoui, M., Becirevic, D., Mornas, V., Sanfilippo, F.: PoS LATTICE 2013, 384. arXiv:1311.5071[hep-lat] (2014)

  26. Bhol, A. EPL 106, 31001 (2014)

  27. Monahan, C. J., Na, H., Bouchard, C. M., Lepage, G. P., Shigemitsu, J.: PoS LATTICE 2016, 298. arXiv:1611.09667[hep-lat] (2016)

  28. Dutta, R., Rajeev, N.: Phys.Rev. D 97, 095045. arXiv:1803.03038[hep-ph] (2018)

  29. Dutta, R., Rajeev, N.: arXiv:1908.06243[hep-ph]

  30. Sahoo, S., Mohanta, R.: arXiv:1910.09269[hep-ph]

  31. Das, N., Dutta, R.: J. Phys. G: Nucl. Part. Phys. 47, 115001. arXiv:1912.06811[hep-ph] (2020)

  32. Hu, X. Q., Jin, S, P., Xiao, Z. J.: Chinese Phys. C 44, 053102. arXiv:1912.03981[hep-ph] (2020)

  33. Pich, A., Tuzón, P.: Phys. Rev. D 80, 091702. arXiv:0908.1554[hep-ph] (2009)

  34. Fajfer, S., Kos̆nik, N.: Phys. Lett. B 755, 270. arXiv:1511.06024[hep-ph] (2016)

  35. Sakaki, Y., Tanaka, M., Tayduganov, A., Watanabe, R.: Phys. Rev. D 88, 094012, arXiv:1309.0301[hep-ph] (2013)

  36. Beneke, M., Feldmann, Th.: Nucl. Phys. B 592, 3, [hep-ph/0008255] (2001)

  37. Faustov, R. N., Gallin, V. O.: Phys. Rev. D 87, 034033, arXiv:1212.3167[hep-ph] (2013)

  38. Doršner, I., Fajfer, S., Greljo, A., Kamenik, J. F., Košnik, N.: Phys. Rept. 641, 1. arXiv:1603.04993[hep-ph] (2016)

  39. Particle Data Group Collaboration, Tanabashi, M., et al.: . Phys. Rev. D 98, 030001 (2018)

    Google Scholar 

  40. Jung, M., Pich, A., Tuzon, P.: JHEP 1011, 003. arXiv:1006.0470[hep-ph] (2010)

  41. Eberhardt, O., Martinez, A. P., Pich, A.: arXiv:2012.09200[hep-ph]

  42. Freytsis, M., Ligeti, Z., Ruderman, J. T.: Phys. Rev. D 92, 054018. arXiv:1506.08896[hep-ph] (2015)

Download references

Acknowledgments

This work is supported by the Key laboratory of Quark and lepton Physics(CCNU), Ministry of Education (QLPL201605) and research projects of Henan science and technology committee (212300410378).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai-Wei Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, SW. Study of Bs\(D_{s}^{*} \tau \bar {\nu }\) Decay in the Aligned Two-Higgs-Doublet Model and Vector Leptoquark Model. Int J Theor Phys 60, 3225–3233 (2021). https://doi.org/10.1007/s10773-021-04821-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04821-0

Keywords

Navigation