Skip to main content
Log in

Cyclic Remote State Preparation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We present a novel scheme of cyclic remote state preparation via a six-qubit entangled state as the quantum channel. By introducing three auxiliary particles and using feedforward measurement strategy, Alice can remotely prepare an arbitrary single-qubit quantum state for Bob, Bob can remotely prepare an arbitrary single-qubit quantum state on Charlie’s site and Charlie can also remotely prepare an arbitrary single-qubit quantum state for Alice. It is pointed out that the cyclic remote preparation in the opposite direction can be perfectly achieved by changing the quantum channel. Furthermore, we generalize the above scheme to systems having N observers, so that cyclic remote state preparation can be realized in quantum information networks with N observers in different directions by changing quantum channels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lo, H.K.: Classical-communication cost in distributed quantum-information processing: a generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  2. Bennett, C.H., DiVincenzo, D.P., Shor, et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  3. Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  4. Wei, J., Shi, L., Zhu, Y., et al: Deterministic remote preparation of arbitrary multi-qubit equatorial states via two-qubit entangled states. Quantum Inf. Process. 17, 70 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  5. Devetak, I., Berger, T.: Low-entanglement remote state preparation. Phys. Rev. Lett. 87, 197901 (2001)

    Article  ADS  Google Scholar 

  6. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  7. Kurucz, Z., Adam, P., Kis, Z., Janszky, J.: Continuous variable remote state preparation. Phys. Rev. A 72, 052315 (2005)

    Article  ADS  Google Scholar 

  8. An, N.B., Kim, J.: Joint remote state preparation. J. Phys. B At. Mol. Opt. Phys. 41, 095501 (2008)

    Article  ADS  Google Scholar 

  9. Luo, M.X., Chen, X.B., Ma, S.Y., Niu, X.X., Yang, Y.X.: Joint remote preparation of an arbitrary three-qubit state. Opt. Commun. 83, 4796–4801 (2010)

    Article  ADS  Google Scholar 

  10. Luo, M.X., Peng, J.Y., Mo, Z.W., Joint, R.S.P.: of an arbitrary five-qubit Brown state. Int. J. Theor. Phys. 52, 644–653 (2013)

    Article  Google Scholar 

  11. Ma, S.Y., Luo, M.X.: Schemes for remotely preparing an arbitrary five Cqubit Brown -type state. Int. J. Quantum Inform. 11, 1350042 (2013)

    Article  ADS  Google Scholar 

  12. Zhang, Z.H., Shu, L., Mo, Z.W., Zheng, J., Ma, S.Y., Luo, M.X.: Joint remote state preparation between multi-sender and multi-receiver. Quantum Inf. Process 13, 1979–2005 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  13. Ma, S.Y., Gao, C., Luo, M.X.: Efficient schemes of joint remote preparation with a passive receiver via EPR pairs. Chin. Phys. B 24, 110308 (2015)

    Article  ADS  Google Scholar 

  14. Peng, J.Y., Luo, M.X., Mo, Z.W., et al.: Flexible deterministic joint remote state preparation of some states. Int. J. Quantum Inf. 11, 1350044 (2013)

    Article  MathSciNet  Google Scholar 

  15. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of arbitrary two-particle states via GHZ-type states. Quantum Inf. Process. 12, 2325–2342 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  16. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  17. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Joint remote state preparation of a four-dimensional quantum stste. Chin. Phys. Lett. 31, 010301 (2014)

    Article  ADS  Google Scholar 

  18. Zhang, D., Zha, X.W., Duan, Y., et al.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  19. Peng, J.Y., Bai, M.Q., Mo, Z.W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  20. Wang, Z.Y., Song, J.F.: Controlled remote prepartion of a two-qubit state via positive operator-valued measure and two three-qubit entanglements. Int. J. Theor. Phys. 50, 2410 (2011)

    Article  Google Scholar 

  21. Luo, M.X., Chen, X.B., Ma, S.Y., Yang, Y.X., Hu, Z.M.: Remote preparation of an arbitrary two-qubit state with three-party. Int. J. Theor. Phys. 49, 1262 (2010)

    Article  MathSciNet  Google Scholar 

  22. Liu, L.L., Hwang T.: Controlled remote state preparation protocols via AKLT states. Quantum Inf. Process. 13, 1639 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wang, X., Mo, Z.W.: Bidirectional controlled joint remote state preparation via a seven-qubit entangled state. Int. J. Theor. Phys. 56, 1052 (2017)

    Article  Google Scholar 

  24. Chen, Y.X., Du, J., Liu, S.Y., et al.: Cyclic quantum teleportation. Quantum Inf. Process. 16(8), 1–9 (2017)

    Article  MathSciNet  ADS  Google Scholar 

  25. Sang, M.H., Nie, Y.Y.: Deterministic tripartite controlled remote state preparation. Int. J. Theor. Phys. 56(10), 3092–3095 (2017)

    Article  Google Scholar 

  26. Zha, X.W., Yu, X.Y., Cao, Y.: Tripartite controlled remote state preparation via a seven-qubit entangled state and three auxiliary particles. Int. J. Theor. Phys. 58, 282–293 (2019)

    Article  Google Scholar 

  27. Luo, M.X.: Computationally efficient nonlinear bell inequalities for quantum networks. Phys. Rev. Lett. 120, 140402 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  28. Luo, M.X.: A nonlocal game for witnessing quantum networks. npj Quantum Inf. 5, 91 (2019)

    Article  ADS  Google Scholar 

  29. Luo, M.X.: Nonsignaling causal hierarchy of general multisource networks. Phys. Rev. A 101, 062317 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  30. Zhang, D., Zha, X.W., Li, W., Yu, Y.: Bidirectional and asymmetric quantum controlled teleportation via maximally eight-qubit entangled state. Quantum Inf. Process 14, 3835–3844 (2015)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Jia-yin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia-yin, P., Hong-xuan, L. Cyclic Remote State Preparation. Int J Theor Phys 60, 1593–1602 (2021). https://doi.org/10.1007/s10773-021-04782-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04782-4

Keywords

Navigation