Skip to main content
Log in

Population Trapping in the Excited State of an Open Two-level Atomic System Under Non-Hermitian Feedback Controls

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the excited-state population of an open two-level atomic system under the quantum feedback control with non-Hermitian feedback Hamiltonian. We firstly derive the master equation under non-Hermitian feedback controls for the two-level atomic system by using the general measurement theory and then respectively discuss the effect of different feedback parameters on the excited-state population. The results show that the excited-state population can be effectively protected from dissipative environments by adjusting feedback parameters. Furthermore, two schemes to realize long-time excited-state population trapping are proposed. The one is under the quantum feedback control with parity-time (PT)-symmetric feedback Hamiltonian, and the other recovers to the Hermitian quantum-jump-based feedback control. These originally come from the fact that the decay of the open two-level atomic system can be completely balanced by feedback controls with proper feedback parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Liu, B., Ning, X.J.: Scheme for multistep resonance photoionization of atoms. Phys. Rev. A 64, 013401 (2001)

    Article  ADS  Google Scholar 

  2. Aspect, A., Arimondo, E., Kaiser, R., Vansteenkiste, N., Cohen-Tannoudji, C.: Laser cooling below the one-photon recoil energy by velocity-selective coherent population trapping. Phys. Rev. Lett. 61, 826–9 (1988)

    Article  ADS  Google Scholar 

  3. Fleischhauer, M., Imamoglu, A., Marangos, J.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–73 (2005)

    Article  ADS  Google Scholar 

  4. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003–25 (1998)

    Article  ADS  Google Scholar 

  5. Mompart, J., Corbalan, R.: Lasing without inversion. J. Opt. B: Quantum Semiclass. Opt. 2, R7–24 (2000)

    Article  ADS  Google Scholar 

  6. Alzetta, G., Gozzini, A., Moi, L., Orriols, G.: An experimental method for the observation of R.F. transitions and laser beat resonances in oriented Na vapour. II Nuovo Cimento B 36, 5 (1976)

    Article  ADS  Google Scholar 

  7. Cirac, J.I., Sánchez-Soto, L.L.: Population trapping in two-level model: Spectral and statistical properties. Phys. Rev. A 44, 3317 (1997)

    Article  ADS  Google Scholar 

  8. Liu, J., Li, J.F., Zhang, C., Li, Z.Y.: Population trapping of a two-level atom via interaction with CEP-locked laser pulse. J. Phys. Commun. 2, 085017 (2018)

    Article  Google Scholar 

  9. Radmore, P.M.: Population trapping in mutilevel system. Phys. Rev. A 26, 2252 (1982)

    Article  ADS  Google Scholar 

  10. Saffman, M., Waller, T.G., Mϕ lmer, K.: Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  11. Peyronel, T., Firstenberg, O., Liang, Q.Y., Hofferberth, S., Gorshkov, A.V., Phohl, T., Lukin, M.D., Vuletić, V.: Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature 488, 57 (2012)

    Article  ADS  Google Scholar 

  12. Zhang, S.Q., Li, H., Li, M.X., Guo, M., Song, L.J.: Control of the atomic population of an excited atom by using the double Lorentzian reservior. Int. J. Theor. Phys. 58, 2158–2166 (2019)

    Article  Google Scholar 

  13. Kumawat, B.L., Kumar, P., Dasgupta, S.: Population trapping in the excited states using vacuum-induced coherence and adiabatic process. J. Phys. B: At. Mol. Opt. Phys. 51, 045507 (2018)

    Article  ADS  Google Scholar 

  14. Du, C., Hu, Z., Li, S.: Reservoir-induceed transparency and coherent population trapping. J. Opt. B: Quantum Semiclass. Opt. 6, 263–268 (2004)

    Article  ADS  Google Scholar 

  15. Zhang, S.Q., Li, H., Li, M.X., Liu, X.H., Song, L.J.: The use of dynamic environment library to achieve controlling of atomic spontaneous emission process. Int. J. Theor. Phys. 59, 2880–2888 (2020)

    Article  Google Scholar 

  16. Xiao, X., Fang, M.F., Li, Y.L.: Non-markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B: At Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  17. Zou, H.M., Fang, M.F.: Population dynamics of excited atoms in Non-Markovian environments at zero and finite temperature. Chin. Phys. B 24, 080304 (2015)

    Article  ADS  Google Scholar 

  18. Zou, H.M., Liu, Y., Fang, M.F.: Population dynamics of excited atoms in dissipative cavities. Int. J. Theor. Phys. 55, 4469–4479 (2016)

    Article  Google Scholar 

  19. Wiseman, H.M., Milburn, G.J.: Quantum theory of opical feedback via homodyne detection. Phys. Rev. Lett. 70, 548–551 (1993)

    Article  ADS  Google Scholar 

  20. Wiseman, H.M.: Quantum theory of continuous feedback. Phys. Rev. A 49, 2133–2150 (1994)

    Article  ADS  Google Scholar 

  21. Shao, X.Q., Zheng, T.Y., Zhang, S.: Engineering steady three atom singlet state via quantum-jump-based feedback. Phys. Rev. A 85, 042308 (2012)

    Article  ADS  Google Scholar 

  22. Shao, X.Q., Wang, Z.H., Liu, H.D., Yi, X.X.: Dissipative preparation of a tripartite singlet state in coupled arrays of cavities via quantum feedback control. Phys. Rev. A 94, 032307 (2016)

    Article  ADS  Google Scholar 

  23. Sun, W.M., Su, S.L., Jin, Z., Liang, Y., Zhu, A.D., Wang, H.F., Zhang, S.: Dissipative preparation of three-atom entanglement state via quantum feedback control. J. Opt. Soc. Am. B 32, 1873–1880 (2015)

    Article  ADS  Google Scholar 

  24. Chen, L., wang, H.F., Zhang, S.: Entanglement dynamics of three atoms under quantum-jump-based control. J. Opt. Soc. Am. B 30, 475–481 (2013)

    Article  ADS  Google Scholar 

  25. Yu, M., Fang, M.F.: Steady and optimal entropy squeezing of a two-level atom with quantum-jump-based feedback and classical driving in a dissipative cavity. Quantum Inf. Process. 15, 4175 (2016)

    Article  ADS  Google Scholar 

  26. Li, J.G., Zou, J., Shao, B., Cai, J.F.: Steady atomic entanglement with different quantum feedbacks. Phys. Rev. A 77, 012339 (2008)

    Article  ADS  Google Scholar 

  27. Yu, M., Fang, M.F.: Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments. Quantum Inf. Process. 16, 213 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  28. Hu, J., Ji, Y.: Manipulating of the entropic uncertainty in open quantum system: via quantum-jump-based feedback control. Int. J. Theor. Phys. 59, 974–982 (2020)

    Article  MathSciNet  Google Scholar 

  29. Haseli, S.: The effect of homodyne-based feedback control on quantum speed limit time. Int. J. Theor. Phys. 59, 1927–1933 (2020)

    Article  MathSciNet  Google Scholar 

  30. Zong, X.L., Song, W., Yang, M., Cao, Z.L.: Enhanceing non-Markovianity by quantum feedback control. Quantum Inf. Process. 19, 131 (2020)

    Article  ADS  Google Scholar 

  31. Li, Y., Luo, B., Guo, H.: Entanglement and quantum discord dynamics of two atoms under practical feedback control. Phys. Rev. A 84, 012316 (2011)

    Article  ADS  Google Scholar 

  32. Wang, J., Wiseman, H.M., Milburn, G.J.: Dynamical creation of entanglement by homodyne-mediated feedback. Phys. Rev. A 71, 042309 (2005)

    Article  ADS  Google Scholar 

  33. Zheng, Q., Ge, L., Yao, Y., Zhi, Q.J.: Enhancing parameter precision of optimal quantum estimation by direct quantum feedback. Phys. Rev. A 91, 033805 (2015)

    Article  ADS  Google Scholar 

  34. Lee, Y.C., Hsieh, M.H., Flammia, S.T., Lee, R.K.: Local PT symmetry violates the no-signaling principle. Phys. Rev. Lett. 112, 130404 (2014)

    Article  ADS  Google Scholar 

  35. Chen, S.L., Chen, G.Y., Chen, Y.N.: Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 90, 054301 (2014)

    Article  ADS  Google Scholar 

  36. Wang, Y.Y., Fang, M.F.: Quantum Fisher information of a two-level system controlled by non-Hermitian operation under depolarization. Quantum Inf. Process. 19, 173 (2020)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.11374096) and the Startup Foundation for Doctors of Hunan University of Arts and Science (18BSQD31).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Yu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Fang, MF. Population Trapping in the Excited State of an Open Two-level Atomic System Under Non-Hermitian Feedback Controls. Int J Theor Phys 60, 1556–1564 (2021). https://doi.org/10.1007/s10773-021-04778-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04778-0

Keywords

Navigation