Skip to main content
Log in

Interaction Between Two Ground-State Atoms

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the interatomic energy and force of two ground-state atoms in interaction with the fluctuating quantum massless scalar field in vacuum with two different approaches, i.e. the stationary perturbation theory and the DDC formalism [the formalism proposed by Dalibard, Dupont-Roc and Cohen-Tannoudji]. With the DDC formalism, we calculate the interatomic energy in terms of the contributions of vacuum fluctuations and the contributions of the atomic radiation reaction. We find that, in the near region, the contributions of vacuum fluctuations is less important than the contributions of the atomic radiation reaction, and as a result, the interatomic force is attractive and proportional to L− 3. While in the far zone, the contributions of vacuum fluctuations and those of the atomic radiation reaction become equally important, and the interatomic force is attractive and proportional to L− 4. The interatomic energy and force derived with these two different approaches are accurately the same. We comment that the two different approaches deal with the interatomic interaction from different perspectives and have their own advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. For the case of atoms being static which will be studied in the next section, the coordinate time t coincides with the proper time τ.

References

  1. Cohen-Tannoudji, C., Dupont-Roc, J., Grynberg, G.: Photons and Atoms. Introduction to Quantum Electrodynamics, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2004)

  2. Saffman, M., Walker, T.G., Mølmer, K.: . Rev. Mod. Phys. 82, 2313 (2010)

    Article  ADS  Google Scholar 

  3. Juffmann, T., et al.: . Nat. Nanotechnol. 7, 297 (2012)

    Article  ADS  Google Scholar 

  4. Israelachvili, J.: Intermolecular and Surface Forces. Academic Press, New York (1992)

    Google Scholar 

  5. Nguyen, V.D., Faber, S., Hu, Z., Wegdam, G.H., Schall, P.: . Nat. Commun. 4, 1584 (2013)

    Article  ADS  Google Scholar 

  6. Reimers, J.R., Ford, M.J., Marcuccio, S.M., Ulstrup, J., Hush, N.S.: . Nature Reviews Chemistry 1, 0017 (2017)

    Article  Google Scholar 

  7. Wang, Y., Kim, J.C., Wu, R.J., et al.: . Nature 568, 70 (2019)

    Article  ADS  Google Scholar 

  8. Craig, D.P., Thirunamachandran, T.: Molecular Quantum Electrodynamics. Dover, Mineola, NY (1998)

  9. Casimir, H.B.G., Polder, D.: . Phys. Rev. 73, 360 (1948)

    Article  ADS  Google Scholar 

  10. Casimir, H.B.G.: . Proc. Kon. Ned. Akad. Wetensschap 51, 793 (1948)

    Google Scholar 

  11. Au, C.K., Feinberg, G., Sucher, J.: . Phys. Rev. Lett. 53, 1145 (1984)

    Article  ADS  Google Scholar 

  12. Andersson, Y., Langreth, D.C., Lundqvist, B.I.: . Phys. Rev. Lett. 76, 102 (1996)

    Article  ADS  Google Scholar 

  13. Amthor, T., Reetz-Lamour, M., Westermann, S., Denskat, J., Weidemüller, M.: . Phys. Rev. Lett. 98, 023004 (2007)

    Article  ADS  Google Scholar 

  14. Buhmann, S.Y., Scheel, S.: . Phys. Rev. Lett. 100, 253201 (2008)

    Article  ADS  Google Scholar 

  15. Zhang, G., Tkatchenko, A., Paier, J., Appel, H., Scheffler, M.: . Phys. Rev. Lett. 107, 245501 (2011)

    Article  ADS  Google Scholar 

  16. Tkatchenko, A., DiStasio, R., Car, R., Scheffler, M.: . Phys. Rev. Lett. 108, 236402 (2012)

    Article  ADS  Google Scholar 

  17. Béguin, L., Vernier, A., Chicireanu, R., Lahaye, T., Browaeys, A.: . Phys. Rev. Lett. 110, 263201 (2013)

    Article  ADS  Google Scholar 

  18. Kawai, S., Foster, A.S., Bjö rkman, T., et al.: . Nature Communicatons 7, 11559 (2016)

  19. Brambilla, N., Shtabovenko, V., Castell, J.T., Vairo, A.: . Phys. Rev. D 95, 116004 (2017)

    Article  ADS  Google Scholar 

  20. Marino, J., Noto, A., Passante, R.: . Phys. Rev. Lett. 113, 020403 (2014)

    Article  ADS  Google Scholar 

  21. Menezes, G., Kiefer, C., Marino, J.: . Phys. Rev. D 95, 085014 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. Zhou, W., Cheng, S., Yu, H.: . Phys. Rev. A 103, 012227 (2021)

    Article  ADS  Google Scholar 

  23. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: . J. Phys. France 43, 1617 (1982)

    Article  Google Scholar 

  24. Dalibard, J., Dupont-Roc, J., Cohen-Tannoudji, C.: . J. Phys. France 45, 637 (1984)

    Article  Google Scholar 

  25. Dicke, R.H.: . Phys. Rev. 93, 99 (1954)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the NSFC under Grants No. 11875172; and the K. C. Wong Magna Fund in Ningbo University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenting Zhou.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Z., Zhou, W. Interaction Between Two Ground-State Atoms. Int J Theor Phys 60, 2025–2036 (2021). https://doi.org/10.1007/s10773-021-04759-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04759-3

Keywords

Navigation