Skip to main content
Log in

Entanglement of a Nanowires System with Rashba Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a scheme to investigate the behavior of a ballistic nanowire system with Rashba interaction within a perpendicular magnetic field. The quantum entanglement of a nanowire system is discussed via the negativity. When the strong and weak magnetic fields are applied, we discuss the influence of the spin-orbit interaction and the initial states on the population inversion and the negativity. Our results show that the degree of entanglement for the nanowire system mainly depends on the effect of the spin-orbit interaction and the initial states of the system. This opens up new avenues for designing nanowire systems for future quantum computation and communication applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. žutić, I., Fabian, J., Sarma, S.D.: Spintronics: fundamentals and applications. Reviews of Modern Physics 76(2), 323 (2004)

    Article  ADS  Google Scholar 

  2. Awschalom, D.D., Samarth, N.: Optical manipulation, transport and storage of spin coherence in semiconductors. In: Semiconductor Spintronics and Quantum Computation, pp 147–193. Springer (2002)

  3. Frolov, S.M., Plissard, S.R., Nadj-Perge, S., Kouwenhoven, L.P., Bakkers, E.P.: Quantum computing based on semiconductor nanowires. MRS Bulletin 38(10), 809–815 (2013)

    Article  Google Scholar 

  4. Rashba, E.I.: Spin–orbit coupling and spin transport. Physica E: Low-Dimensional Systems and Nanostructures 34(1-2), 31–35 (2006)

    Article  ADS  Google Scholar 

  5. Bychkov, Y.A., Rashba, E.I.: Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. Journal of Physics C: Solid State Physics 17(33), 6039 (1984)

    Article  ADS  Google Scholar 

  6. Studer, M., Salis, G., Ensslin, K., Driscoll, D., Gossard, A.: Gate-controlled spin-orbit interaction in a parabolic gaas/algaas quantum well. Physical Review Letters 103(2), 027201 (2009)

    Article  ADS  Google Scholar 

  7. Wang, Z., Zheng, Q., Wang, X., Li, Y.: The energy-level crossing behavior and quantum fisher information in a quantum well with spin-orbit coupling. Scientific Reports 6(1), 1–9 (2016)

    Article  Google Scholar 

  8. Debald, S., Kramer, B.: Rashba effect and magnetic field in semiconductor quantum wires. Physical Review B 71(11), 115322 (2005)

    Article  ADS  Google Scholar 

  9. Sakr, M.: Electric modulation of optical absorption in nanowires. Optics Communications 378, 16–21 (2016)

    Article  ADS  Google Scholar 

  10. Mohamed, R., Farouk, A., Homid, A., El-Kalaawy, O., Abdel-Aty, A.-H., Abdel-Aty, M., Ghose, S.: Squeezing dynamics of a nanowire system with spin-orbit interaction. Scientific Reports 8(1), 1–12 (2018)

    Google Scholar 

  11. Debald, S., Emary, C.: Spin-orbit-driven coherent oscillations in a few-electron quantum dot. Physical Review Letters 94(22), 226803 (2005)

    Article  ADS  Google Scholar 

  12. Xie, Q.-T., Cui, S., Cao, J.-P., Amico, L., Fan, H.: Anisotropic rabi model. Physical Review X 4(2), 021046 (2014)

    Article  ADS  Google Scholar 

  13. Abo-Kahla, D.A., Abdel-Aty, M., Ahmed, S.A.A.: Analytical solution of the two-qubit quantum rabi model. International Journal on Perceptive and Cognitive Computing 2(1)

  14. Navascués, M., Guryanova, Y., Hoban, M.J., Acín, A.: Almost quantum correlations. Nature Communications 6(1), 1–7 (2015)

    Article  Google Scholar 

  15. Mohamed, A.-B., Hessian, H., Eleuch, H.: Quantum correlations of two qubits beyond entanglement in two lossy cavities linked by a waveguide. Chaos, Solitons & Fractals 135, 109773 (2020)

    Article  MathSciNet  Google Scholar 

  16. Qureshi, H.S., Ullah, S., Ghafoor, F.: Hierarchy of quantum correlations using a linear beam splitter. Scientific Reports 8(1), 1–10 (2018)

    Google Scholar 

  17. Mohamed, A.-B., Homid, A., Abdel-Aty, M., Eleuch, H.: Trace-norm correlation beyond entanglement in inas nanowire system with spin–orbit interaction and external electric field. JOSA B 36(4), 926–934 (2019)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  19. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Physical Review Letters 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Bouwnmeester, D., Ekert, A., Zeilinger, A.: The physics of quantum information (2000)

  21. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  22. Hessian, H.A., Hashem, M.: Entanglement and purity loss for the system of two 2-level atoms in the presence of the stark shift. Quantum Inf. Process 10 (4), 543–556 (2011)

    Article  MathSciNet  Google Scholar 

  23. Abdel-Aty, M., Al-Showaikh, F., Hassan, S.: Entanglement of a single-mode cavity qed of a raman interaction. International Journal of Quantum Information 5(01n02), 105–110 (2007)

    Article  Google Scholar 

  24. Chao, W., Mao-Fa, F.: The entanglement of two moving atoms interacting with a single-mode field via a three-photon process. Chinese Physics B 19(2), 020309 (2010)

    Article  Google Scholar 

  25. Abdalla, M.S., Ahmed, M., Khalil, E., Obada, A.-F.: Entanglement between a single two-level atom and quantum systems of n-level atoms in the presence of an external classical field. Journal of Russian Laser Research 37(4), 361–373 (2016)

    Article  Google Scholar 

  26. Neumann, J.: Mathematical Foundations of Quantum Mechanics. Princeton University Press (1955)

  27. Abo-Kahla, D., Abdel-Aty, M., Farouk, A.: The population inversion and the entropy of a moving two-level atom in interaction with a quantized field. Int. J. Theor. Phys. 57(8), 2319–2329 (2018)

    Article  MathSciNet  Google Scholar 

  28. Abdel-Aty, M.: Linear entropy of a driven central spin interacting with an antiferromagnetic environment. Natural Science (2014)

  29. Mohamed, A.-B., Abdalla, M.S., Obada, A.-S.: The effect of damping on a quantum system containing a kerr-like medium. The European Physical Journal Plus 133(5), 190 (2018)

    Article  ADS  Google Scholar 

  30. Abdel-Aty, M.: Quantum information and entropy squeezing of a nonlinear multiquantum jc model. Commun. Theor. Phys. 37(6), 723 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  31. Abo-Kahla, D., Abdel-Aty, M.: Information entropy of multi-qubit rabi system. International Journal of Quantum Information 13(06), 1550042 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  32. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  33. Zhou, L., Sheng, Y.-B.: Concurrence measurement for the two-qubit optical and atomic states. Entropy 17(6), 4293–4322 (2015)

    Article  ADS  Google Scholar 

  34. Lee, S., Chi, D.P., Oh, S.D., Kim, J.: Convex-roof extended negativity as an entanglement measure for bipartite quantum systems. Physical Review A 68(6), 062304 (2003)

    Article  ADS  Google Scholar 

  35. Vidal, G., Werner, R.F.: Computable measure of entanglement. Physical Review A 65(3), 032314 (2002)

    Article  ADS  Google Scholar 

  36. Mohamed, A.-B., Hessian, H.: Quantum correlation and coherence in dissipative two sc-qubit systems interacting with a coherent sc-cavity. Int. J. Theor. Phys. 58(10), 3521–3534 (2019)

    Article  MathSciNet  Google Scholar 

  37. Sakr, M.: Electrical manipulation of spins in a nanowire with rashba interaction. Physica E: Low-Dimensional Systems and Nanostructures 81, 253–258 (2016)

    Article  ADS  Google Scholar 

  38. Abdalla, M.S., Obada, A.F., Khalil, E., Ali, S.: The influence of phase damping on a two-level atom in the presence of the classical laser field. Laser Physics 23(11), 115201 (2013)

    Article  ADS  Google Scholar 

  39. Mohamed, A.-B.A., Abdalla, M.S., Obada, A.-S.F.: Quantum effects due to the interaction between su (1, 1) and su (2) quantum systems with damping. The European Physical Journal D 71(9), 223 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to Prof. Doaa. A. M. Abo-Kahla. Ain Shams University, Egypt, for her involvement and continued support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. I. Mohamed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, R.I., Eldin, M.G., Sakr, M.R. et al. Entanglement of a Nanowires System with Rashba Interaction. Int J Theor Phys 60, 1651–1661 (2021). https://doi.org/10.1007/s10773-021-04755-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04755-7

Keywords

Navigation