Skip to main content
Log in

A Novel Practical Quantum Secure Direct Communication Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel practical quantum secure direct communication (QSDC) protocol is constructed by utilizing the evolution law of atom via cavity QED. It transmits the atoms from one communicant to the other communicant in a two-step manner. It adopts two-atom product states as the initial quantum resource and the decoy atom technique to guarantee the security against the outside attack. It only needs single-atom measurements, and neither the quantum entanglement swapping nor the unitary operations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing. Proc IEEE Int Conf Comput Syst and Signal Process, 175–179 (1984)

  2. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  3. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68(4), 042317 (2003)

    Article  ADS  Google Scholar 

  4. Wang, J., Zhang, Q., Tang, C.J.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Lett. A 358(4), 256–258 (2006)

    Article  ADS  Google Scholar 

  5. Tan, X.Q., Zhang, X.Q.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15(5), 2137–2154 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  6. Wang, L.L., Ma, W.P., Wang, M.L., Shen, D.S.: Three-party quantum secure direct communication with single photons in both polarization and spatial-mode degrees of freedom. Int. J. Theor. Phys. 55, 2490–2499 (2016)

    Article  Google Scholar 

  7. Wu, F.Z., Yang, G.J., Wang, H.B., Xiong, J., Alzahrani, F., Hobiny, A., Deng, F.G.: High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states. Sci. China Phys. Mech. Astron. 60, 120313 (2017)

    Article  ADS  Google Scholar 

  8. Chen, S.S., Zhou, L., Zhong, W., Sheng, Y.B.: Three-step three-party quantum secure direct communication. Sci. China Phys. Mech. Astron. 61, 90312 (2018)

    Article  ADS  Google Scholar 

  9. Khorasani, F.M., Houshmand, M., Anzabi-Nezhad, N.S.: Authenticated controlled quantum secure direct communication protocol based on five-particle brown states. Int. J. Theor. Phys. 59, 1612–1622 (2020)

    Article  MathSciNet  Google Scholar 

  10. Bebrov, G., Dimova, R.: Efficient quantum secure direct communication protocol based on quantum channel compression. Int. J. Theor. Phys. 59, 426–435 (2020)

    Article  MathSciNet  Google Scholar 

  11. Shu, J.: Quantum State Preparation and Quantum Information Processing in Cavity QED, pp. 19–20. University of science and technology of China, Heifei (2007)

    Google Scholar 

  12. Zheng, S.B., Guo, G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  13. Zheng, S.B.: Generation of entangled states for many multilevel atoms in a thermal cavity and ions in thermal motion. Phys. Rev. A 68, 035801 (2003)

    Article  ADS  Google Scholar 

  14. Shan, C.J., Liu, J.B., Chen, T., Liu, T.K., Huang, Y.X., Li, H.: Controlled quantum secure direct communication with local separate measurements in cavity QED. Int. J. Theor. Phys. 49, 334–342 (2010)

    Article  Google Scholar 

  15. Shan, C.J., Liu, J.B., Cheng, W.W., Liu, T.K., Huang, Y.X., Li, H.: Bidirectional quantum secure direct communication in driven cavity QED. Mod. Phys. Lett. B 23, 3225–3234 (2009)

    Article  ADS  Google Scholar 

  16. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85(2), 441–444 (2000)

    Article  ADS  Google Scholar 

  17. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    Article  ADS  Google Scholar 

  18. Chen, J.H., Lee, K.C., Hwang, T.: The enhancement of Zhou et al.’s quantum secret sharing protocol. Int. J. Mod. Phy. C 20(10), 1531–1535 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Yin-Ju.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin-Ju, L. A Novel Practical Quantum Secure Direct Communication Protocol. Int J Theor Phys 60, 1159–1163 (2021). https://doi.org/10.1007/s10773-021-04741-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04741-z

Keywords

Navigation