Skip to main content
Log in

Efficient Decoding Scheme of Non-Uniform Concatenation Quantum Code with Deep Neural Network

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

How to design a universal fault-tolerant quantum computation protocol with high fidelity and low resource consumption is a hot topic in the field of quantum computing research. By reducing the effective code distance, the design of a universal fault-tolerant gate set based on concatenation code has been proposed. The auxiliary state required by the error correction of code must be verified before it can be used, so as to avoid the errors spread from the auxiliary state to the data state. But the qubit consumption can be very large due to multiple verification processes for the ancillary block. In this work, we analyze the ancillary consumption of two different verification schemes used in the Steane’s error correction process. We take the basic state preparation of a 25-qubit 2-level concatenation code as an example, adopt a simpler verification circuit in its error correction process, and design an efficient decoding strategy by using deep neural network algorithm. Numerical simulations are also performed to analyze our low qubit resource overhead error correction scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gottesman, D., Lo, H.-K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. In: International symposium on information theory, 2004. ISIT 2004. Proceedings., pp 136. IEEE (2004)

  2. Lanyon, B.P., Whitfield, J.D., Gillett, G.G., Goggin, M.E., Almeida, M.P., Kassal, I., Biamonte, J.D., Mohseni, M., Powell, B.J., Barbieri, M., et al.: Towards quantum chemistry on a quantum computer. Nature chemistry 2(2), 106–111 (2010)

    Article  ADS  Google Scholar 

  3. Baireuther, P., Caio, M.D., Criger, B., Beenakker, C.W.J, O’Brien, T.E.: Neural network decoder for topological color codes with circuit level noise. New J. Phys. 21(1), 013003 (2019)

    Article  ADS  Google Scholar 

  4. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549(7671), 195–202 (2017)

    Article  ADS  Google Scholar 

  5. Preskill, J.: Quantum computing in the nisq era and beyond. Quantum 2, 79 (2018)

    Article  Google Scholar 

  6. Neill, C., Roushan, P., Kechedzhi, K., Boixo, S., Isakov, S.V., Smelyanskiy, V., Megrant, A., Chiaro, B., Dunsworth, A., Arya, K., et al.: :a blueprint for demonstrating quantum supremacy with superconducting qubits. Science 360(6385), 195–199 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  7. Häffner, H., Roos, C.F., Blatt, R.: Quantum computing with trapped ions. Physics reports 469(4), 155–203 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Raussendorf, R., Harrington, J.: Fault-tolerant quantum computation with high threshold in two dimensions. Physical review letters 98(19), 190504 (2007)

    Article  ADS  Google Scholar 

  9. Fowler, A.G., Stephens, A.M., Groszkowski, P.: High-threshold universal quantum computation on the surface code. Phys. Rev. A 80(5), 052312 (2009)

    Article  ADS  Google Scholar 

  10. Ballance, C.J., Harty, T.P., Linke, N.M., Sepiol, M.A., Lucas, D.M.: High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Phys. Rev. Lett. 117, 060504 (2016). https://doi.org/10.1103/PhysRevLett.117.060504. https://link.aps.org/doi/10.1103/PhysRevLett.117.060504

    Article  ADS  Google Scholar 

  11. Devoret, M.H., Schoelkopf, R.J.: Superconducting circuits for quantum information: an outlook. Science 339(6124), 1169–1174 (2013)

    Article  ADS  Google Scholar 

  12. Arute, F., Arya, K., Babbush, R., Bacon, D., Bardin, J.C., Barends, R., Biswas, R., Boixo, S., Brandao, F.G.S.L., Buell, D.A., et al.: Quantum supremacy using a programmable superconducting processor. Nature 574 (7779), 505–510 (2019)

    Article  ADS  Google Scholar 

  13. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46(6), 1920–1950 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Physical review letters 103(15), 150502 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  15. Gottesman, D.: An introduction to quantum error correction and fault-tolerant quantum computation. In: Quantum information science and its contributions to mathematics, Proceedings of Symposia in Applied Mathematics, vol. 68, pp. 13–58 (2010)

  16. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  17. Shor, P.W.: Fault-tolerant quantum computation. In: Foundations of computer science, 1996. Proceedings., 37th Annual Symposium on, pp. 56–65. IEEE (1996)

  18. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77(5), 793 (1996)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  19. Knill, E., Laflamme, R., Zurek, W.: Accuracy threshold for quantum computation (1996)

  20. Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Overhead analysis of universal concatenated quantum codes. Phys. Rev. A 95(2), 022313 (2017)

    Article  ADS  Google Scholar 

  21. Bacon, D.: Operator quantum error-correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73(1), 012340 (2006)

    Article  ADS  Google Scholar 

  22. Aliferis, P., Cross, A.W.: Subsystem fault tolerance with the bacon-shor code. Physical review letters 98(22), 220502 (2007)

    Article  ADS  Google Scholar 

  23. Gottesman, D.: Fault-tolerant quantum computation with constant overhead. Quantum Information & Computation 14(15-16), 1338–1372 (2014)

    MathSciNet  Google Scholar 

  24. Chao, R., Reichardt, B.W.: Fault-tolerant quantum computation with few qubits. npj Quantum Information 4(1), 42 (2018)

    Article  ADS  Google Scholar 

  25. Chamberland, C., Beverland, M.E.: Flag fault-tolerant error correction with arbitrary distance codes. Quantum 2, 53 (2018)

    Article  Google Scholar 

  26. Torlai, G., Melko, R.G.: Neural decoder for topological codes. Phys. Rev. Lett. 119, 030501 (2017). https://doi.org/10.1103/PhysRevLett.119.030501. https://link.aps.org/doi/10.1103/PhysRevLett.119.030501

    Article  MathSciNet  ADS  Google Scholar 

  27. Baireuther, P., O’Brien, T.E., Tarasinski, B., Beenakker, Carlo WJ: Machine-learning-assisted correction of correlated qubit errors in a topological code. Quantum 2, 48 (2018)

    Article  Google Scholar 

  28. Krastanov, S., Jiang, L.: Deep neural network probabilistic decoder for stabilizer codes. Scientific reports 7(1), 1–7 (2017)

    Article  Google Scholar 

  29. Carleo, G., Cirac, I., Cranmer, K., Daudet, L., Schuld, M., Tishby, N., Vogt-Maranto, L., Zdeborová, L.: Machine learning and the physical sciences. Rev. Mod. Phys. 91(4), 045002 (2019)

    Article  ADS  Google Scholar 

  30. Chamberland, C., Ronagh, P.: Deep neural decoders for near term fault-tolerant experiments. Quantum Science and Technology 3(4), 044002 (2018)

    Article  ADS  Google Scholar 

  31. Poulin, D.: Optimal and efficient decoding of concatenated quantum block codes. Phys. Rev. A 74(5), 052333 (2006)

    Article  ADS  Google Scholar 

  32. Chamberland, C., Jochym-O’Connor, T., Laflamme, R.: Thresholds for universal concatenated quantum codes. Physical review letters 117(1), 010501 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  33. Gottesman, D.E.: Stabilizer codes and quantum error correction. Ph.D. Thesis, California Institute of Technology (1997)

  34. Jochym-O’Connor, T., Laflamme, R.: Using concatenated quantum codes for universal fault-tolerant quantum gates. Physical review letters 112(1), 010505 (2014)

    Article  ADS  Google Scholar 

  35. Nikahd, E., Sedighi, M., Zamani, M.S.: Nonuniform code concatenation for universal fault-tolerant quantum computing. Phys. Rev. A 96(3), 032337 (2017)

    Article  ADS  Google Scholar 

  36. Bishop, C.M.: Pattern recognition and machine learning (information science and statistics). Springer-Verlag New York, Inc., New York (2006)

    MATH  Google Scholar 

  37. Lecun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521 (7553), 436 (2015)

    Article  ADS  Google Scholar 

  38. Aaronson, S., Gottesman, D.: Improved simulation of stabilizer circuits. Phys. Rev. A 70(5), 052328 (2004)

    Article  ADS  Google Scholar 

  39. Aliferis, P., Gottesman, D., Preskill, J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Information & Computation 6(2), 97–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  40. Wecker, D., Svore, K.M.: Liqui| >: A software design architecture and domain-specific language for quantum computing. arXiv:1402.4467 (2014)

  41. Fowler, A.G., Mariantoni, M., Martinis, J.M., Cleland, A.N.: Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A 86(3), 032324 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key R&D Program of China under Grant No. 2018YFA0306703, the National Natural Science Foundation of China under Grant No. 61772006, the Natural Science Foundation of Guangxi under Grant No. 2019GXNSFAA185033, and the Special Fund for Bagui Scholars of Guangxi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to GuoWu Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, C., Wang, Y., Wu, J. et al. Efficient Decoding Scheme of Non-Uniform Concatenation Quantum Code with Deep Neural Network. Int J Theor Phys 60, 848–864 (2021). https://doi.org/10.1007/s10773-020-04706-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04706-8

Keywords

Navigation