Skip to main content
Log in

Quantum Coherence and Transfer of Quantum Information with a Kerr Medium Under Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the dynamics of quantum coherence of a system consisting of two interacting atoms coupling with a common cavity which is filled with a nonlinear Kerr-like medium, in the presence of intrinsic decoherence. It is shown that the stationary quantum coherence can arise in the system as the time approach to infinite. In particular, the amount of stationary quantum coherence can be enhanced by adjusting the Kerr interaction and dipole-dipole interaction. Furthermore, we also explore the influence of Kerr interaction and dipole-dipole interaction on the transfer of quantum information by a witness of the trace distance and find that the transferred information and stationary quantum information can be controlled by the Kerr interaction and dipole-dipole interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Vedral, V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  3. Streltsov, A., Adesso, G., Plenio, M.B.: Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  4. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)

    Article  ADS  Google Scholar 

  6. Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 033812 (2014)

    Article  ADS  Google Scholar 

  7. Giovannetti, V., Lloyd, S., Maccone, L.: Advances in quantum metrology. Nat. Photon. 5, 222 (2011)

    Article  ADS  Google Scholar 

  8. Chin, A.W., Huelga, S.F., Plenio, M.B.: Quantum metrology in non-Markovian environments. Phys. Rev. Lett. 109, 233601 (2012)

    Article  ADS  Google Scholar 

  9. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  10. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  11. Chin, A. W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigmentCprotein complexes. Nat. Phys. 9, 113 (2013)

    Article  Google Scholar 

  12. Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  13. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  14. Winter, A., Yang, D.: Operational resource theory of coherence. Phys. Rev. Lett. 116, 120404 (2016)

    Article  ADS  Google Scholar 

  15. Chitambar, E., Hsieh, M.H.: Relating the resource theories of entanglement and quantum coherence. Phys. Rev. Lett. 117, 020402 (2016)

    Article  ADS  Google Scholar 

  16. Silva, I.A., Souza, A.M., Bromley, T.R., Cianciaruso, M., Marx, R., Sarthour, R.S., Oliveira, I.S., Lo Franco, R., Glaser, S.J., deAzevedo, E.R., Soares-Pinto, D.O., Adesso, G.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    Article  ADS  Google Scholar 

  17. Chitambar, E., Gour, G.: Comparison of incoherent operations and measures of coherence. Phys. Rev. A 94, 052336 (2016)

  18. Napoli, C., Bromley, T.R., Cianciaruso, M., Piani, M., Johnston, N., Adesso, G.: Robustness of coherence: An operational and observable measure of quantum coherence. Phys. Rev. Lett. 116, 150502 (2016)

  19. Rana, S., Parashar, P., Lewenstein, M.: Trace distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  20. Yu, X.D., Zhang, D.J., Xu, G.F., Tong, D.M.: Alternative framework for quantifying coherence. Phys. Rev. A 94(R), 060302 (2016)

    Article  ADS  Google Scholar 

  21. Xiao, Y., Zhou, H.Y., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  22. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  23. Bu, K., Singh, U., Fei, S.M., Pati, A.K., Wu, J.: Maximum relative entropy of coherence: An operational coherence measure. Phys. Rev. Lett. 119, 150405 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Bu, K., Anand, N., Singh, U.: Asymmetry and coherence weight of quantum states. Phys. Rev. A 97, 032342 (2018)

    Article  ADS  Google Scholar 

  25. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  26. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  27. Ma, J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  28. Radhakrishnan, C., Parthasarathy, M., Jambulingam, S., Byrnes, T.: Distribution of quantum coherence in multipartite systems. Phys. Rev. Lett. 116, 150504 (2016)

    Article  ADS  Google Scholar 

  29. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  30. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303 (2016)

    Article  ADS  Google Scholar 

  31. Chitambar, E., Streltsov, A., Rana, S., Bera, M.N., Adesso, G., Lewenstein, M.: Assisted distillation of quantum coherence. Phys. Rev. Lett. 116, 070402 (2016)

    Article  ADS  Google Scholar 

  32. Martini, F.D., Sciarrino, F., Spagnolo, N.: Decoherence, environment-induced superselection, and classicality of a macroscopic quantum superposition generated by quantum cloning. Phys. Rev. A 79, 052305 (2009)

    Article  ADS  Google Scholar 

  33. Ma, X.S., Wang, A.M., Cao, Y.: Entanglement evolution of three-qubit states in a quantum-critical environment. Phys. Rev. B 76, 155327 (2007)

    Article  ADS  Google Scholar 

  34. Liu, B.Q., Shao, B., Zou, J.: Quantum discord for a central two-qubit system coupled to an XY spin-chain environment. Phys. Rev. A 82, 062119 (2010)

    Article  ADS  Google Scholar 

  35. Hu, M.L., Fan, H.: Evolution equation for quantum coherence. Sci. Rep. 6, 29260 (2016)

    Article  ADS  Google Scholar 

  36. Wu, W., Xu, J.B.: Quantum coherence of spin-boson model at finite temperature. Ann. Phys. 48, 377 (2017)

    Google Scholar 

  37. Lostaglio, M., Korzekwa, K., Milne, A.: Markovian evolution of quantum coherence under symmetric dynamics. Phys. Rev. A 96, 032109 (2017)

    Article  ADS  Google Scholar 

  38. Zhang, Y.J., Han, W., Xia, Y.J., Yu, Y.M., Fan, H.: Role of initial system-bath correlation on coherence trapping. Sci. Rep. 5, 13359 (2015)

    Article  ADS  Google Scholar 

  39. Liu, X.B., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Wu, W., Cheng, J.Q.: Coherent dynamics of a qubitCoscillator system in a noisy environment. Quantum Inf. Process. 17, 300 (2018)

    Article  ADS  Google Scholar 

  41. Huang, Z.M., Situ, H.Z.: Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf. Process. 16, 222 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Guarnieri, G., Kolár̆, M., Filip, R.: Steady-state coherences by composite system-bath interactions. Phys. Rev. Lett. 121, 070401 (2018)

    Article  ADS  Google Scholar 

  43. Mukhopadhyay, C.: Generating steady quantum coherence and magic through an autonomous thermodynamic machine by utilizing a spin bath. Phys. Rev. A 98, 012102 (2018)

    Article  ADS  Google Scholar 

  44. Hu, M.L., Zhou, W.: Enhancing two-qubit quantum coherence in a correlated dephasing channel. Laser Phys. Lett. 16, 045201 (2019)

    Article  ADS  Google Scholar 

  45. Mortezapour, A., Naeimi, G., Franco, R.L.: Coherence and entanglement dynamics of vibrating qubits. Opt. Commun. 424, 26–31 (2018)

    Article  ADS  Google Scholar 

  46. Tavis, M., Cummings, F.W.: Exact solution for an N-MoleculeRadiation-Field Hamiltonian. Phys. Rev. 170, 379 (1968)

    Article  ADS  Google Scholar 

  47. Ma, J.M., Jiao, Z.Y., Li, N.: Quantum entanglement in two-photon tavis-cummings model with a kerr nonlinearity. Int J Theory Phys. 46, 2550–2559 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Gardiner, C.: Quantum Noise. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  49. Moya-Cessa, H., Buzek, V., Kim, M. S., Knight, P.L.: Intrinsic decoherence in the atom-field interaction. Phys. Rev. A 48, 3900 (1993)

    Article  ADS  Google Scholar 

  50. Breuer, H.P., Laine, E.M., Piilo, J.: Measure for the degree of non-markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  51. Laine, E.M., Piilo, J., Breuer, H.P.: Measure for the non-Markovianity of quantum processes. Phys. Rev. A 81, 062115 (2010)

    Article  ADS  Google Scholar 

  52. Laine, E.M., Piilo, J., Breuer, H.P.: Witness for initial system-environment correlations in open-system dynamics. Europhys. Lett. 92, 60010 (2010)

    Article  ADS  Google Scholar 

  53. Liu, B.H., Li, L., Huang, Y.F., Li, C.F., Guo, G.C., Laine, E.M., Breuer, H.P., Piilo, J.: Experimental control of the transition from Markovian to non-Markovian dynamics of open quantum systems. Nature Phys. 7, 931 (2011)

    Article  ADS  Google Scholar 

  54. Tang, J.S., Li, C.F., Li, Y. L., Zou, X. B., Guo, G.C., Breuer, H.P., Laine, E.M., Piilo, J.: Measuring non-Markovianity of processes with controllable system-environment interaction. Europhys. Lett. 97, 10002 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the National Natural Science Foundation of China (Grant Nos.11364006,11264008), the Guizhou Provincial Science and Technology Foundation (Grant No.[2017]7343), the Doctor funding of Guizhou Normal University, the Key laboratory of low dimensional condensed matter physics of higher educational institution of Guizhou province(Grant No.[2016]002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi-Liang He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, QL., Ding, M., Xiao, YJ. et al. Quantum Coherence and Transfer of Quantum Information with a Kerr Medium Under Decoherence. Int J Theor Phys 60, 304–313 (2021). https://doi.org/10.1007/s10773-020-04693-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04693-w

Keywords

Navigation