Skip to main content
Log in

Exact Solutions of a Damped Harmonic Oscillator in a Time Dependent Noncommutative Space

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we have obtained the exact eigenstates of a two dimensional damped harmonic oscillator in time dependent noncommutative space. It has been observed that for some specific choices of the damping factor and the time dependent frequency of the oscillator, there exists interesting solutions of the time dependent noncommutative parameters following from the solutions of the Ermakov-Pinney equation. Further, these solutions enable us to get exact analytic forms for the phase which relates the eigenstates of the Hamiltonian with the eigenstates of the Lewis invariant. We then obtain expressions for the matrix elements of the coordinate operators raised to a finite arbitrary power. From these general results we then compute the expectation value of the Hamiltonian. The expectation values of the energy are found to vary with time for different solutions of the Ermakov-Pinney equation corresponding to different choices of the damping factor and the time dependent frequency of the oscillator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no new data were created or analysed in this study.

Notes

  1. We shall be considering NC phase space in our work. However, we shall generically refer this as NC space.

  2. The polar angle 𝜃 should not be confused with the time dependent NC parameter 𝜃(t).

References

  1. Lewis, H.R., Riesenfeld, W.B. Jr.: . J. Math. Phys. 10, 1458 (1969)

    Article  ADS  Google Scholar 

  2. Lewis, H.R. Jr.: . J. Math. Phys. 9, 1976 (1968)

    Article  ADS  Google Scholar 

  3. Lewis, H.R. Jr: . Phys. Rev. Lett. 18, 510 (1967). Erratum Phys. Rev. Lett. 18, 636 (1967)

    Article  ADS  Google Scholar 

  4. Abdalla, M.S., Ismael, N.A.: . Int. J. Theor. Phys. 48, 2757 (2009)

    Article  Google Scholar 

  5. Pedrosa, I.A., de Lima, D.: . Int. J. Mod. Phys. B 28, 1450177 (2014)

    Article  ADS  Google Scholar 

  6. Jannussis, A., Bartzis, B.: . Phys. Lett. A 129, 263 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  7. Pedrosa, I.A.: . J. Math. Phys. 28, 2662 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  8. Pedrosa, I.A.: . Rev. Bras. Fis. 19(3), 502 (1989)

    Google Scholar 

  9. Lawson, L.M., Avossevou, G.Y.H., Gouba, L.: . J. Math. Phys. 59, 112101 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Doplicher, S., Fredenhagen, K., Roberts, J.E.: . Commun. Math. Phys. 172, 187 (1995)

    Article  ADS  Google Scholar 

  11. Amati, D., Ciafaloni, M., Veneziano, G.: . Phys. Lett. B 216, 41 (1989)

    Article  ADS  Google Scholar 

  12. Seiberg, N., Witten, E.: . J. High Energy Phys. 09, 032 (1999)

    Article  ADS  Google Scholar 

  13. Rovelli, C.: . Living Rev. Relativity 11, 5 (2008)

    Article  ADS  Google Scholar 

  14. Bigatti, D., Susskind, L.: . Phys. Rev. D 62, 066004 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  15. Dayi, O.F., Jellal, A.: . J. Math. Phys. 43, 4592 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  16. Chakraborty, B., Gangopadhyay, S., Saha, A.: . Phys. Rev. D 70, 107707 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  17. Scholtz, F.G., Chakraborty, B.: . Phys. Rev. D 71, 085005 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  18. Scholtz, F.G., Chakraborty, B., Gangopadhyay, S., Govaerts, J.: . J. Phys. A 38, 9849 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  19. Chakraborty, B., Gangopadhyay, S., Hazra, A.G., Scholtz, F.G.: . J. Phys. A 39, 9557 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Banerjee, R., Gangopadhyay, S., Modak, S.K.: . Phys. Lett. B 686, 181 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Saha, A., Gangopadhyay, S., Saha, S.: . Phys. Rev. D 83, 025004 (2011)

    Article  ADS  Google Scholar 

  22. Saha, A., Gangopadhyay, S., Saha, S.: . Phys. Rev. D 97, 044015 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Smailagic, A., Spallucci, E.: . J. Phys. A 36, L467 (2003)

    Article  ADS  Google Scholar 

  24. Gangopadhyay, S., Scholtz, F.G.: . Phys. Rev. Lett. 102, 241602 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  25. Dey, S., Fring, A.: . Phys. Rev. D 90, 084005 (2014)

    Article  ADS  Google Scholar 

  26. Streklas, A.: . Physica A 385, 124 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Reuter, M.: . Phys. Rev. D 57, 971 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  28. Reuter, M., Saueressig, F.: . Phys. Rev. D 65, 065016 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  29. Reuter, M., Saueressig, F.: Quantum Gravity and the Functional Renormalization Group: The Road towards Asymptotic Safety, Cambridge Monographs on Mathematical Physics. https://doi.org/10.1017/9781316227596https://doi.org/10.1017/9781316227596(2020)

  30. Ermakov, V.: . Univ. Izv. Kiev. 20, 1 (1880)

    Google Scholar 

  31. Pinney, E.: . Proc. Am. Math. Soc. 1, 681 (1950)

    Google Scholar 

  32. Caldirola, P.: . Nuovo Cimento 18, 393 (1941)

    Article  Google Scholar 

  33. Kanai, E.: . Prog. Theor. Phys. 3, 440 (1948)

    Article  ADS  Google Scholar 

  34. Mezincescu, L.: Star Operation in Quantum Mechanics. arXiv:0007046[hep-th] (2020)

  35. Arfken, G.B., Weber, H.J.: Mathematical Methods For Physicists. Academic Press, Inc. (2020)

  36. Nikiforov, A.F., Uvarov, V.B.: Special Function of Mathematical Physics. Birkhäuser, Basel, Switzerland (1988)

  37. Chiellini, A.: . Bolletino dell’Unione Matematica Italiana 10, 301 (1931)

    Google Scholar 

Download references

Acknowledgements

MD would like to thank Ms. Riddhi Chatterjee and Ms.Rituparna Mandal for their helpful assistance to operate the software Mathematica.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunandan Gangopadhyay.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dutta, M., Ganguly, S. & Gangopadhyay, S. Exact Solutions of a Damped Harmonic Oscillator in a Time Dependent Noncommutative Space. Int J Theor Phys 59, 3852–3875 (2020). https://doi.org/10.1007/s10773-020-04637-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04637-4

Keywords

Navigation