Revisiting the Experimental Test of Mermin’s Inequalities at IBMQ

Abstract

Bell-type inequalities allow for experimental testing of local hidden variable theories. In the present work we show the violation of Mermin’s inequalities in IBM’s five-qubit quantum computers, ruling out the local realism hypothesis in quantum mechanics. Furthermore, our numerical results show significant improvement with respect to previous implementations. The circuit implementation of these inequalities is also proposed as a way of assessing the reliability of different quantum computers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Notes

  1. 1.

    See [9] for further details.

References

  1. 1.

    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. 2.

    Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1(3), 195 (1964)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Freedman, S.J., Clauser, J.F.: Experimental test of local Hidden-Variable theories. Phys. Rev. Lett. 28, 938 (1972)

    Article  ADS  Google Scholar 

  4. 4.

    Aspect, A., Dalibard, J., Roger, G.: Experimental test of bell’s inequalities using Time-Varying analyzers. Phys. Rev. Lett. 49, 1804 (1982)

    MathSciNet  Article  ADS  Google Scholar 

  5. 5.

    Aspect, A., Grangier, P., Roger, G.: Experimental test of realistic local theories via bell’s theorem. Phys. Rev. Lett. 47, 460 (1981)

    Article  ADS  Google Scholar 

  6. 6.

    Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. 23(15), 880 (1969)

    MATH  ADS  Google Scholar 

  7. 7.

    Swain, M., Rai, A., Behera, B.K., Panigrahi, P.K.: Experimental demonstration of the violations of Mermin’s and Svetlichny’s inequalities for W- and GHZ-class of states. Quantum. Inf. Process. 18, 218 (2019)

    Article  ADS  Google Scholar 

  8. 8.

    Siddiqui, M.A., Sazim, S.: Tight upper bound for the maximal expectation value of the Mermin operators. Quantum. Inf. Process. 18, 131 (2019)

    MathSciNet  Article  ADS  Google Scholar 

  9. 9.

    Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65(15), 1838 (1990)

    MathSciNet  Article  ADS  Google Scholar 

  10. 10.

    IBM Quantum Experience, http://www.research.ibm.com/quantum

  11. 11.

    Greenberg, D.M., Horne, M.A., Zeilinger, A., Kafatos, M.: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Kuwer Academic, Dordrecht (1989)

    Google Scholar 

  12. 12.

    Alsina, D., Latorre, J.I.: Experimental test of Mermin inequalities on a five qubit quantum computer. Phys. Rev. A 94, 012314 (2016)

    Article  ADS  Google Scholar 

  13. 13.

    García-Martín, D., Sierra, G.: Five experimental tests on the 5-Qubit IBM quantum computer. Journal of Applied Mathematics and Physics 6, 1460–1475 (2018)

    Article  Google Scholar 

  14. 14.

    Huang, W.-J., et al.: Mermin’s inequalities of multiple qubits with orthogonal measurements on IBM Q 53-qubit system. Quantum Engineering 2, 2 (2020)

    Google Scholar 

  15. 15.

    Collins, D., Gisin, N., Popescu, S., Roberts, D., Scarani, V.: Bell-type inequalities to detect true n-body nonseparability. Phys. Rev. Lett. 88, 170405 (2002)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank B. Zaldívar, A. Casas, E. López and G. Sierra for insightful conversations and advice. We also thank the IBM Quantum team for making multiple devices available via the IBM Quantum Experience. The access to the IBM Quantum Experience has been provided by the CSIC IBM Q Hub.

Funding

This work was done with financial support from the Universidad Autónoma de Madrid through the grant “Ayudas de Investigación en Estudios de Máster”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Diego Fernández de la Pradilla.

Ethics declarations

Conflict of interests

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Availability of data and material

The data used for this study will be shared upon request.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González, D., de la Pradilla, D.F. & González, G. Revisiting the Experimental Test of Mermin’s Inequalities at IBMQ. Int J Theor Phys 59, 3756–3768 (2020). https://doi.org/10.1007/s10773-020-04629-4

Download citation

Keywords

  • Mermin’s inequalities
  • Quantum computation
  • Quantum circuit
  • Local realism