Skip to main content
Log in

An Improved Noise Quantum Annealing Method for TSP

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Traveling Salesman Problem (TSP) is a combinatorial optimization problem, which has NP-Complete (NPC) complexity. At present, there is no exact algorithm to solve similar problems, only an approximate algorithm to simplify the problem can be found. For example, quantum annealing algorithm (QA) can play such a role. QA transforms the distance matrix sum of TSP into Pauli matrix, adds a transverse magnetic field to realize the quantum tunneling effect, reduces the energy needed to cross the barrier, and reduces the number of iterations to find the optimal solution. However, although the QA has fewer iteration steps, it usually produces errors. In this context, this paper’s INQA improves the QA. In this paper, the theoretical basis of quantum annealing algorithm is introduced, aiming at the shortcomings of quantum annealing algorithm in solving TSP problem, a new algorithm INQA is proposed, and it is verified by experiments. In the case of high initial temperature, the INQA has larger search range and more active search. Meanwhile, with the decrease of temperature, the search range is reduced, and the accuracy of the algorithm is improved. In fact, QA in this paper is a quantum annealing method for simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li-yun, Y.: On the solution of the traveling salesman problem with simulated annealing. Microellectronics and Computer, 193–196 (2007)

  2. Hasegawa, M.: Verification and rectification of the physical analogy of simulated annealing for the solution of the traveling salesman problem. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 83(3 Pt 2) (2011)

  3. Kirkpatrick, S., Gelatt, C.D. Jr.: Optimization by simulated annealing. Science 220(13), 671–680 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  4. Martoňák, R., Santoro, G.E., Tosatti, E.: Quantum annealing ofthe traveling salesman problem. Phys. Rev. E 057701(5), (1)–057701(4) (2004)

    Google Scholar 

  5. Chen, H., Kong, X., Chong, B., Qin, G., Zhou, X., Peng, X., Du, J.: Experimental demonstration of a quantum annealing algorithm for the traveling salesman problem in a nuclear-magnetic-resonance quantum simulator. Phys. Rev. A 83(3) (2011)

  6. Moser, H.R.: The quantum mechanical solution of the traveling salesman problem. Physica E: Low-Dimension. Syst. Nanostruct. 16(2) (2003)

  7. Du, W., Bin, L., Yu, T.: Quantum annealing algorithms: State of the art. Computer research and development, 1501–1508 (2008)

  8. Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rea. E 58, 5355 (1998)

    Article  ADS  Google Scholar 

  9. Richard, H., Warren, J.: Adapting the traveling salesman problem to an adiabatic quantum computer. Quantum Inf. Process 12(4), 1781–1785 (2013)

    Article  MathSciNet  Google Scholar 

  10. Richard, H., Warren, J.: Small traveling salesman problems. Journal Adv. Appl. Math. 2(2) (2017)

  11. Papalitsas, C., Andronikos, T., Giannakis, K., et al.: A QUBO model for the traveling salesman problem with time windows. Algorithms 12, 11 (2019)

    Article  MathSciNet  Google Scholar 

  12. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000)

  13. Farhi, E., Goldstone, J., Gutmann, S., Lapan, J., Lundgren, A., Preda, D.: A quantum adiabatic evolutionalgorithm applied to random instances of an Np-complete problem. Science 292, 472–475 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195 (2017)

    Article  ADS  Google Scholar 

  15. Lloyd, S., Mohseni, M., Rebentrost, P.: Quantum algorithms for supervised and unsupervised machine learning. arXiv:1307.0411 (2013)

  16. Garnerone, S., Zanardi, P., Lidar, D.A.: Adiabatic quantum algorithm for search engine ranking. Phys. Rea. Lett. 108, 230506 (2012)

    Article  ADS  Google Scholar 

  17. Babbush, R., Love, P., Aspuru-guzik, A.J.: Adiabatic quantum simulation of quantum chemistry. Sci. Rep. 4, 6603 (2014)

    Article  ADS  Google Scholar 

  18. Perdomo-ortiz, A., Dickson, N., Drew-brook, M., Rose, G., Aspuru-guzik, A.: Finding low-energyconformations of lattice protein models by quantum annealing. Sci. Rep. 2, 571 (2012)

    Article  ADS  Google Scholar 

  19. Neukart, F., Compostella, G., Seidel, C., Von Dollen, D., Yarkoni, S., Parney, B.: Traffic flow optimizationusing a quantum annealer. Front. ICT 4, 29 (2017)

    Article  Google Scholar 

  20. Cai, B.B., Zhang, X.H.: Hybrid quantum genetic algorithm and its application in VRP. Comput. Simul. 7, 267–270 (2010)

    Google Scholar 

  21. Lucas, J.: Ising formulations of many NP problems. Front. Phys. 2, 5 (2014)

    Article  Google Scholar 

  22. Binder, K., Young, A.: Spin glasses: Experimental facts, theoretical concepts and open questions. Rea. ModPlys. 58, 801 (1986)

    ADS  Google Scholar 

  23. Venturelli, D., Mandra, S., Knysh, S.O., Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Phys. Rea. X 5, 031040 (2015)

    Google Scholar 

  24. Titiloye, O., Crispin, A.: Quantum annealing of the graph coloring problem. Discret. Optim. 8, 376–384 (2011)

    Article  MathSciNet  Google Scholar 

  25. Venturelli, D., Marchand, D.J, Rojo, G.: Quantum annealing implementation of job-shop scheduling. arXiv:1506.08479 (2015)

  26. Battaglia, D.A., Santoro, G.E., Tosatti, E.: Optimization by quantum annealing: Lessons from hard satisfiability problems. Phys. Rev. E 71(6), 066707 (2005)

  27. Cruz-santos, W., Venegas-andraca, S., Lanzagorta, M.: A QUBO Formulation of the Stereo Matching Problemfor D-wave Quantum Annealers. Entropy 20, 786 (2018)

    Article  ADS  Google Scholar 

  28. Huagen, C., Bing, C.: Mechanism study of simulated annealing algorithm. J. Tongji Univ., 802–805 (2004)

  29. Feng, P.: The principle of simulated annealing algorithm and its application in optimization. Journal of Tongji University (2006)

  30. Hongtao, Z., Hongmei, X., Lingying, T.: An improved quantum annealing algorithm. J. Jiangxi Nomal Univ. 40(05), 473–475 (2006)

    MATH  Google Scholar 

  31. Hongtao, Z., Hongmei, X., Lingying, T.: Quantum annealing inversion and its implementation. Chin. J. Geophys. 49(2), 577–583 (2006)

  32. Matsuura, S., Nishimori, H., Albash, T., et al.: Mean Field Analysis of Quantum Annealing Correction. Phys. Rev. Lett. 116(22) (2016)

  33. Weber, S.J., Samach, G.O., Hover, D., et al.: Coherent Coupled Qubits for Quantum Annealing. Phys. Rev. Appl. 8(1), 014004 (2017)

  34. Abdel-Aty, A.-H., Khedr, A.N., Saddeek, Y.B., et al.: Thermal entanglement in quantum annealing processor. Int. J. Quantum Inf. 16(1) (2018)

  35. Guangzhi, Z., Chen, Z., Qicui, T., Jiang, L., Jiajia, Z., Zhonglin, P.: Prestack stochastic inversion based on thequantum annealing Metropolis-hastingsalgorithm. Petrol. Geophys. Explor. 53(01), 153–160 + 9 (2018)

  36. Hatomura, T., Mori, T.: Shortcuts to adiabatic classical spin dynamics mimicking quantum annealing. Phys. Rev. E 98(3), 032136 (2018)

  37. Torggler, V., Krämer, S., Ritsch, H.: Quantum annealing with ultracold atoms in a multimode optical resonator. Phys. Rev. A 95(3), 032310 (2017)

  38. Passarelli, G., Cataudella, V., Lucignano, P.: Improving quantum annealing of the ferromagnetic p-spin model through pausing. Phys. Rev. B 100(2), 024302 (2019)

  39. Hormozi, L., Brown, E.W., Carleo, G., et al.: Nonstoquastic Hamiltonians and quantum annealing of an Ising spin glass. Phys. Rev. B 95(18), 184416 (2017)

  40. Mbeng, G.B., Privitera, L., Arceci, L., et al.: Dynamics of simulated quantum annealing in random Ising chains. Phys. Rev. B 99(6), 064201 (2019)

  41. Nevado, P., Porras, D.: Hidden frustrated interactions and quantum annealing in trapped-ion spin-phonon chains. Phys. Rev. A 93(1), 013625 (2016)

  42. Mukherjee, S., Rajak, A., Chakrabarti, B.K.: Possible ergodic-nonergodic regions in the quantum Sherrington-Kirkpatrick spin glass model and quantum annealing. Phys. Rev. E 97(2), 022146 (2016)

  43. Nesterov, A.I., Zepeda, J.C.B., Berman, G.P.: Non-Hermitian quantum annealing in the ferromagnetic Ising model. Phys. Rev. A 87(4), 042332 (2013)

  44. de Falco, D., Tamascelli, D.: Quantum annealing and the Schrodinger-Langevin-Kostin equation. Phys. Rev. A 79(1), 012315 (2019)

  45. Somma, R.D., Nagaj, D., Kieferová, M.: Quantum Speedup by Quantum Annealing. Phys. Rev. Lett. 109(5), 050501 (2012)

  46. Santra, S., Shehab, O., Balu, R.: Ising formulation of associative memory models and quantum annealing recall. Phys. Rev. A 66(9), 094203 (2017)

  47. Nextremer, Z.: Combinatorial optimization by quantum annealing. https://qiita.com/TomohikoAbe/items/8d52096ad0f578aa2224, Accessed 26 2020 (2016)

  48. Nishimura, K., Nishimori, H.: Quantum annealing with a nonvanishing final value of the transverse field. Phys. Rev. A 96(4), 042310 (2017)

  49. , T.: Quantum Annealing with Longitudinal Bias Fields. Phys. Rev. Lett, 123(12), 120501 (2019)

  50. Kechedzhi, K., Smelyanskiy, V.N.: Open-System Quantum Annealing in Mean-Field Models with Exponential Degeneracy. Phys. Rev. X 6(2), 021028 (2016)

  51. Pastawski, F., Preskill, J.: Error correction for encoded quantum annealing. Phys. Rev. A 93(5), 052325 (2016)

  52. Martoˇnák, R., Santoro, G.E., Tosatti, E.: Error correction for encoded quantum annealing. Phys. Rev. B 96(6), 062330 (2002)

  53. Inack, E.M., Pilati, S.: Simulated quantum annealing of double-well and multiwell potentials. Phys. Rev. E 92(5), 053304 (2015)

  54. Stella, L., Santoro, G.E., Tosatti, T.: Optimization by quantum annealing: Lessons from simple cases. Phys. Rev. B 72(1), 014303 (2005)

  55. Muthukrishnan, S., Albash, T., Lidar, D.A.: Sensitivity of quantum speedup by quantum annealing to a noisy oracle. Phys. Rev. A 99(3), 032324 (2019)

  56. Arceci, L., Barbarino, S., Fazio, R., et al.: Erratum: Dissipative Landau-Zener problem and thermally assisted Quantum Annealing. Phys. Rev. B 98(1), 019902 (2018)

  57. Nishimori, H., Tsuda, J., Knysh, S.: Comparative study of the performance of quantum annealing and simulated annealing. Phys. Rev. E 91(1), 012104 (2015)

  58. Hen, I., Sarandy, M.S.: Driver Hamiltonians for constrained optimization in quantum annealing. Phys. Rev. A 93(6), 062312 (2016)

  59. Vinci, W., Albash, T., Paz-Silva, G., et al.: Quantum annealing correction with minor embedding. Phys. Rev. A 92(4), 042310 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yumin Dong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Y., Huang, Z. An Improved Noise Quantum Annealing Method for TSP. Int J Theor Phys 59, 3737–3755 (2020). https://doi.org/10.1007/s10773-020-04628-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04628-5

Keywords

Navigation