Skip to main content
Log in

Scheme for Bidirectional Quantum Teleportation of Unknown Electron-Spin States of Quantum Dots within Single-Sided Cavities

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We represent the mutual swapping of two unknown states using bidirectional quantum teleportation (BQT) while transferring a single photon. In our BQT scheme, two users (Alice and Bob) can mutually teleport their two unknown states of the electron-spin in quantum dots (QDs) embedded in single-sided cavities. For this BQT scheme, we employ the interactions of a photonic spin (photon) and an electron-spin (excess electron) of QDs confined in a single-sided cavity, which is feasible in practice. The previous BQT scheme which used cross-Kerr nonlinearities (XKNLs) and X-homodyne detection was inevitable the decoherence effect in optical fibers. Consequently, the proposed BQT scheme can enhance an experimental implementation with the use of QD-cavity systems under the decoherence effect and this can also be realized with current technology, compared with the previous BQT scheme based on XKNLs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Dong, L., Xiu, X.M., Gao, Y.J.: A new representation and probabilistic teleportation of an arbitrary and unknown N-particle state. Chin. Phys. 15, 2835 (2006)

    Google Scholar 

  3. Nilsson, J., Stevenson, R.M., Chan, K.H.A., Skiba-Szymanska, J., Lucamarini, M., Ward, M.B., Bennett, A.J., Salter, C.L., Farrer, I., Ritchie, D.A., Shields, A.J.: Quantum teleportation using a light-emitting diode. Nat. Photonics. 7, 311–315 (2013)

    ADS  Google Scholar 

  4. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B. 24, 050304 (2015)

    ADS  Google Scholar 

  5. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Simultaneous quantum transmission and teleportation of unknown photons using intra-and inter-particle entanglement controlled-NOT gates via cross-Kerr nonlinearity and P-homodyne measurements. Int. J. Theor. Phys. 54, 2261–2277 (2015)

    MATH  Google Scholar 

  6. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Generation of two-photon hybrid-entangled W state with photonic qubit and time-bin via cross-Kerr nonlinearities. Phys. Scr. 95, 085104 (2020)

    ADS  Google Scholar 

  7. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A. 93, 012302 (2016)

    ADS  Google Scholar 

  8. Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities. Phys. Lett. A. 381, 1845–1852 (2017)

    ADS  MATH  Google Scholar 

  9. Lin, Q., Li, J.: Quantum control gates with weak cross-Kerr nonlinearity. Phys. Rev. A. 79, 022301 (2009)

    ADS  Google Scholar 

  10. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photonics. 7, 373–377 (2013)

    ADS  Google Scholar 

  11. Chang, D.E., Vuletić, V., Lukin, M.D.: Quantum nonlinear optics - photon by photon. Nat. Photonics. 8, 685–694 (2014)

    ADS  Google Scholar 

  12. Hong, C.H., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity. Sci. Rep. 8, 2566 (2018)

    ADS  Google Scholar 

  13. Heo, J., Hong, C.H., Yang, H.J., Hong, J.P., Choi, S.G.: Analysis of optical parity gates of generating bell state for quantum information and secure quantum communication via weak cross-Kerr nonlinearity under decoherence effect. Quantum Inf. Process. 16, 10 (2017)

    MathSciNet  MATH  Google Scholar 

  14. Kang, M.S., Heo, J., Choi, S.G., Moon, S., Han, S.W.: Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Sci. Rep. 9, 6167 (2019)

    ADS  Google Scholar 

  15. Dong, L., Xiu, X.M., Shen, H.Z., Gao, Y.J., Yi, X.X.: Quantum Fourier transform of polarization photons mediated by weak cross-Kerr nonlinearity. J. Opt. Soc. Am. B. 30, 2765 (2013)

    ADS  Google Scholar 

  16. Heo, J., Won, K., Yang, H.J., Hong, J.P., Choi, S.G.: Photonic scheme of discrete quantum Fourier transform for quantum algorithms via quantum dots. Sci. Rep. 9, 12440 (2019)

    ADS  Google Scholar 

  17. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J., Kwon, D.: Photonic scheme of quantum phase estimation for quantum algorithms via cross-Kerr nonlinearities under decoherence effect. Opt. Express. 27, 31023–31041 (2019)

    ADS  Google Scholar 

  18. Liu, Q., Wang, G.Y., Ai, Q., Zhang, M., Deng, F.G.: complete nondestructive analysis of two-photon six-qubit hyperentangled bell states assisted by cross-Kerr nonlinearity. Sci. Rep. 6, 22016 (2016)

  19. Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Opt. Commun. 396, 239–248 (2017)

    ADS  Google Scholar 

  20. Zhang, J.S., Zeng, W., Chen, A.X.: Effects of cross-Kerr coupling and parametric nonlinearity on normal mode splitting, cooling, and entanglement in optomechanical systems. Quantum Inf. Process. 16, 163 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Müller, M., Vural, H., Schneider, C., Rastelli, A., Schmidt, O.G., Höfling, S., Michler, P.: Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017)

    ADS  Google Scholar 

  22. Heo, J., Hong, C., Choi, S.G., Hong, J.P.: Scheme for generation of three-photon entangled W state assisted by cross-Kerr nonlinearity and quantum dot. Sci. Rep. 9, 10151 (2019)

    ADS  Google Scholar 

  23. Nemoto, K., Munro, W.J.: Nearly deterministic linear optical controlled-NOT gate. Phys. Rev. Lett. 93, 250502 (2004)

    ADS  Google Scholar 

  24. Hoi, I.C., Kockum, A.F., Palomaki, T., Stace, T.M., Fan, B., Tornberg, L., Sathyamoorthy, S.R., Johansson, G., Delsing, P., Wilson, C.M.: Giant cross–Kerr effect for propagating microwaves induced by an artificial atom. Phys. Rev. Lett. 111, 053601 (2013)

    ADS  Google Scholar 

  25. He, B., Sharypov, A.V., Sheng, J., Simon, C., Xiao, M.: Two-photon dynamics in coherent Rydberg atomic ensemble. Phys. Rev. Lett. 112, 133606 (2014)

    ADS  Google Scholar 

  26. Beck, K.M., Hosseini, M., Duan, Y., Vuletić, V.: Large conditional single-photon cross-phase modulation. Sci. Rep. 10, 15334 (2020)

  27. Tiarks, D., Schmidt, S., Rempe, G., Dürr, S.: Optical π phase shift created with a single-photon pulse. Sci. Adv. 2, e1600036 (2016)

    ADS  Google Scholar 

  28. Zhou, L., Chen, L.Q., Zhong, W., Sheng, Y.B.: Recyclable amplification for single-photon entanglement from photon loss and decoherence. Laser Phys. Lett. 15, 015201 (2018)

    ADS  Google Scholar 

  29. Heo, J., Kang, M.S., Hong, C.H., Hong, J.P., Choi, S.G.: Preparation of quantum information encoded on threephoton decoherence-free states via cross-Kerr nonlinearities. Sci. Rep. 8, 13843 (2018)

  30. Xiu, X., Geng, X., Wang, S., Cui, C., Li, Q., Ji, Y., Dong, L.: Construction of a polarization multiphoton controlled one-photon unitary gate assisted by the spatial and temporal degrees of freedom. Adv. Quant. Technol. 2, 1900066 (2019)

    Google Scholar 

  31. Sinclair, J., Angulo, D., Lupu-Gladstein, N., Bonsma-Fisher, K., Steinberg, A.M.: Observation of a large, resonant, cross-Kerr nonlinearity in a cold Rydberg gas. Phys. Rev. Res. 1, 033193 (2019)

    Google Scholar 

  32. Liu, J., Zhou, L., Zhong, W., Sheng, Y.B.: Logic bell state concentration with parity check measurement. Front. Phys. 14, 21601 (2019)

    ADS  Google Scholar 

  33. Zhu, S., Liu, Y.C., Zhao, B.K., Zhou, L., Zhong, W., Sheng, Y.B.: Measurement of the concurrence of arbitrary two-photon six-qubit hyperentangled state. EPL. 129, 50004 (2020)

    ADS  Google Scholar 

  34. Barrett, S.D., Kok, P., Nemoto, K., Beausoleil, R.G., Munro, W.J., Spiller, T.P.: Symmetry analyzer for nondestructive bell-state detection using weak nonlinearities. Phys. Rev. A. 71, 060302 (2005)

    ADS  Google Scholar 

  35. Northup, T.E., Blatt, R.: Quantum information transfer using photons. Nat. Photonics. 8, 356–363 (2014)

    ADS  Google Scholar 

  36. Dong, L., Wang, J.X., Li, Q.Y., Dong, H.K., Xiu, X.M., Gao, Y.J.: Teleportation of a general two-photon state employing a polarization-entangled χ state with nondemolition parity analyses. Quantum Inf. Process. 15, 2955–2970 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  37. Jeong, H.: Using weak nonlinearity under decoherence for macroscopic entanglement generation and quantum computation. Phys. Rev. A. 72, 034305 (2005)

    ADS  Google Scholar 

  38. Jeong, H.: Quantum computation using weak nonlinearities: robustness against decoherence. Phys. Rev. A. 73, 052320 (2006)

    ADS  Google Scholar 

  39. Lin, Q., He, B., Bergou, J.A., Ren, Y.: Processing multiphoton states through operation on a single photon: methods and applications. Phys. Rev. A. 80, 042311 (2009)

    ADS  Google Scholar 

  40. Atature, M., Dreiser, J., Badolato, A., Hogele, A., Karrai, K., Imamoglu, A.: Quantum-dot spin-state preparation with near-Unity Fidelity. Science. 312, 551–553 (2006)

    ADS  Google Scholar 

  41. Xu, X.D., Wu, Y.W., Sun, B., Huang, Q., Cheng, J., Steel, D.G., Bracker, A.S., Gammon, D., Emary, C., Sham, L.J.: Fast spin state initialization in a singly charged InAs-GaAs quantum dot by optical cooling. Phys. Rev. Lett. 99, 097401 (2007)

    ADS  Google Scholar 

  42. Warburton, R.J.: Single spins in self-assembled quantum dots. Nat. Mater. 12, 483–493 (2013)

    ADS  Google Scholar 

  43. Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    ADS  Google Scholar 

  44. Birkedal, D., Leosson, K., Hvam, J.M.: Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001)

    ADS  Google Scholar 

  45. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wust, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science. 325, 70–72 (2009)

    ADS  Google Scholar 

  46. Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider,C., Kamp, M., Hofling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photonics 4, 367 (2010), 370

  47. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B. 83, 115303 (2011)

    ADS  Google Scholar 

  48. Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature. 432, 81–84 (2004)

    ADS  Google Scholar 

  49. Golovach, V.N., Khaetskii, A., Loss, D.: Phonon-induced decay of the Electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004)

    ADS  Google Scholar 

  50. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204–4207 (1999)

    ADS  Google Scholar 

  51. Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon Interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)

    ADS  MATH  Google Scholar 

  52. Gao, W.B., Fallahi, P., Togan, E., Delteil, A., Chin, Y.S., Miguel-Sanchez, J., Imamoglu, A.: Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)

    ADS  Google Scholar 

  53. Kuhlmann, A.V., Prechtel, J.H., Houel, J., Ludwig, A., Reuter, D., Wieck, A.D., Warburton, R.J.: Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)

    ADS  Google Scholar 

  54. Heo, J., Hong, C., Kang, M.S., Yang, H.J.: Encoding scheme using quantum dots for single logical qubit information onto four-photon decoherence-free states. Sci. Rep. 10, Article number: 15334 (2020)

    Google Scholar 

  55. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    ADS  Google Scholar 

  56. Reiserer, A., Ritter, S., Rempe, G.: Nondestructive detection of an optical photon. Science. 342, 1349–1351 (2013)

    ADS  Google Scholar 

  57. Kang, M.S., Heo, J., Choi, S.G., Moon, S., Han, S.W.: Optical Fredkin gate assisted by quantum dot within optical cavity under vacuum noise and sideband leakage. Sci. Rep. 10, 5123 (2020)

    ADS  Google Scholar 

  58. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B. 78, 085307 (2008)

    ADS  Google Scholar 

  59. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B. 78, 125318 (2008)

    ADS  Google Scholar 

  60. Hu, C.Y., Munro, W.J., Young, A., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B. 80, 205326 (2009)

    ADS  Google Scholar 

  61. Hong, C., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots. Quantum Inf. Process. 18, 216 (2019)

    ADS  MathSciNet  Google Scholar 

  62. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005)

    ADS  Google Scholar 

  63. Kok, P.: Effects of self-phase-modulation on weak nonlinear optical quantum gates. Phys. Rev. A. 77, 013808 (2008)

    ADS  Google Scholar 

  64. Warburton, R.J., Dürr, C.S., Karrai, K., Kotthaus, J.P., Medeiros-Ribeiro, G., Petroff, P.M.: Charged excitons in self-assembled semiconductor quantum dots. Phys. Rev. Lett. 79, 5282–5285 (1997)

    ADS  Google Scholar 

  65. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer-Verlag, Berlin (1994)

    MATH  Google Scholar 

  66. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot–semiconductor microcavity system. Nature. 432, 197–200 (2004)

    ADS  Google Scholar 

  67. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature. 432, 200–203 (2004)

    ADS  Google Scholar 

  68. Reitzenstein, S., Hofmann, C., Gorbunov, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    ADS  Google Scholar 

  69. De Greve, K., Press, D., McMahon, P.L., Yamamoto, Y.: Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013)

    ADS  Google Scholar 

  70. Dory, C., Fischer, K.A., Müller, K., Lagoudakis, K.G., Sarmiento, T., Rundquist, A., Zhang, J.L., Kelaita, Y., Vučković, J.: Complete coherent control of a quantum dot strongly coupled to a Nanocavity. Sci. Rep. 6, 25172 (2016)

    ADS  Google Scholar 

  71. Wei, H.R., Deng, F.G.: Scalable photonic quantum computing assisted by quantum-dot spin in double-sided optical microcavity. Opt. Express. 21, 17671–17685 (2013)

    ADS  Google Scholar 

  72. Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express. 22, 593–607 (2014)

    ADS  Google Scholar 

  73. Hu, S., Cui, W.X., Wang, D.Y., Bai, C.H., Guo, Q., Wang, H.F., Zhu, A.D., Zhang, S.: Teleportation of a Toffoli gate among distant solid-state qubits with quantum dots embedded in optical microcavities. Sci. Rep. 5, 11321 (2015)

    ADS  Google Scholar 

  74. Wang, G.Y., Liu, Q., Deng, F.G.: Hyperentanglement purification for two-photon six-qubit quantum systems. Phys. Rev. A. 94, 032319 (2016)

    ADS  Google Scholar 

  75. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atature, M., Gulde, S., Falt, S., Hu, E.L., Imamoglu, A.: Quantum nature of a strongly coupled single quantum dot–cavity system. Nature. 445, 896–899 (2007)

    ADS  Google Scholar 

  76. Bayer, M., Forchel, A.: Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots. Phys. Rev. B. 65, 041308(R) (2002)

    ADS  Google Scholar 

  77. Arnold, C., Loo, V., Lemaıtre, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P., Lanco, L.: Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200000. Appl. Phys. Lett. 100, 111111 (2012)

    ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education (No. 2019R1I1A1A01042699), and the R&D Convergence Program of NST (National Research Council of Science and Technology) of Republic of Korea (Grant No. CAP-18-08-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung-Jin Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Hong, C., Kang, MS. et al. Scheme for Bidirectional Quantum Teleportation of Unknown Electron-Spin States of Quantum Dots within Single-Sided Cavities. Int J Theor Phys 59, 3705–3720 (2020). https://doi.org/10.1007/s10773-020-04626-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04626-7

Keywords

Navigation