Skip to main content
Log in

Protecting Qutrit-Qutrit Entanglement Under Decoherence via Weak Measurement and Measurement Reversal

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the entanglement protection of a qutrit-qutrit system under local amplitude damping channels by weak measurement and measurement reversal. We examine the Δ-type of initially entangled qutrit-qutrit states. We find that the entanglement decays with the decoherence strength increasing for the qutrit-qutrit state. Therefore, we focus on how to protect the quantum entanglement from decoherence by weak measurement and measurement reversal. Our results show that we can prevent amplitude damping decoherence by the combination of prior weak measurement and post optimal measurement reversal comparing with the dynamics without protection. Regardless of the value of decoherence, the protection scheme has better effect on the kind of V-configuration. And with the increase of decoherent strength, the difference is more obvious. Another interesting result is that the enhancement of the entanglement is very weak when decoherent strength is zero.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horodedecki, R., Horodedecki, P., Horodedecki, M., Horodedecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  2. Zyczkowski, K., Horodedecki, P., Horodedecki, M., Horodedecki, R.: Dynamics of quantum entanglement. Phys. Rev. A 86, 012101 (2001)

    Article  MathSciNet  Google Scholar 

  3. Zurek, W.H.: Decoherence einselection and the quantum origins of the classical. Rev. Mod. Phys. 75, 715–775 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  4. Nielsen, M., Chuang, I.: Quantum Information and Computation. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    Article  ADS  Google Scholar 

  6. Yu, T., Eberly, J.H.: Quantum open system theory:bipartite aspects. Phys. Rev. Lett. 97, 140403 (2007)

    Article  Google Scholar 

  7. Almeida, M.P., de Melo, F., Hor-Meyll, M., Salles, A., Walborn, S.P., Ribeiro, P.H.S., Davidovich, L.: Environmental-induced sudden death of entanglement. Science 316, 579–582 (2007)

    Article  ADS  Google Scholar 

  8. Eberly, J.H., Yu, T.: The end of entanglement. Science 316, 555 (2007)

    Article  Google Scholar 

  9. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    Article  ADS  Google Scholar 

  10. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence-free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  12. Kwiat, P.G., Berglund, A.J., Altepeter, J.B., White, A.G.: Experimental vertification of decoherence-free subspaces. Science 290, 498 (2000)

    Article  ADS  Google Scholar 

  13. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  14. West, J.R., Lidar, D.A., Fong, B.H., Gyure, M.F.: High fidelity quantum gates via dynamical decoupling. Phys. Rev. Lett. 105, 230503 (2010)

    Article  ADS  Google Scholar 

  15. Aharonov, Y., Albert, D.Z., Vaidman, L.: How the result of a component of the spin of a spin-1/2 particle can turn out to be 100. Phys. Rev. Lett. 60, 1351 (1988)

    Article  ADS  Google Scholar 

  16. Aharonov, Y., Albert, D.Z., Casher, A., Vaidman, L.: Surprising quantum effects. Phys. Lett. A 124, 199 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  17. Korotkov, A.N., Keane, K.: Decoherence suppression by quantum measurement reversal. Phys. Rev. A 81, 040103(R) (2010)

    Article  ADS  Google Scholar 

  18. Lee, J.C., Jeong, Y.C., Kim, Y.S., Kim, Y.H.: Experimental demonstration of decoherence suppression via quantum measurement reversal. Opt. Express 19, 16309 (2011)

    Article  ADS  Google Scholar 

  19. Sun, Q.Q., Al-Amri, Q.M., Zubairy, M.S.: Reversing the weak measurement of an arbitrary field with finite photon number. Phys. Rev. A 80, 033838 (2009)

    Article  ADS  Google Scholar 

  20. Tan, Q.Y., Wang, L., Li, J.X., Tang, J.W., Wang, X.W.: Amplitude damping decoherence suppression of two-qubit entangled states by weak measurements. Int. J. Theor. Phys. 52, 612–619 (2013)

    Article  Google Scholar 

  21. Sun, Q.Q., Al-Amri, M., Davidovich, L., Zubairy, M.S.: Reversing entanglement change by weak measurement. Phys. Rev. A 82, 052323 (2010)

    Article  ADS  Google Scholar 

  22. Kim, Y.S., Lee, J.C., Kwon, O., Kim, Y.H.: Protecting entanglement from decoherence using weak measurement and quantum measurement reversal. Nature Phys. 8, 117–120 (2012)

    Article  ADS  Google Scholar 

  23. Man, Z.X., Xia, Y.J.: Manipulating entanglement of two qubits in a commom environment by means of weak measurement and quantum measurement reversals. Phys. Rev. A 86, 012325 (2012)

    Article  ADS  Google Scholar 

  24. Man, Z.X., Xia, Y.J.: Enhancing entanglement of two qubits undergoing independent decoherences by local pre- and postmeasurements. Phys. Rev. A 86, 052322 (2012)

    Article  ADS  Google Scholar 

  25. Li, W.J., He, Z., Wang, Q.P.: Protecting distribution entanglement for two-qubit state using weak measurement and reversal. Int. J. Theor. Phys. 56, 2813–2824 (2017)

    Article  MathSciNet  Google Scholar 

  26. Xiao, X.: Protecting qubit-qutrit entanglement from amplitude damping decoherence via weak measurement and reversal. Phys. Scr. 89, 065102 (2014)

    Article  ADS  Google Scholar 

  27. Guo, J.L., Li, H., Long, G.L.: Decoherent dynamics of quantum correlations in qubit-qutrit systems. Quantum Inf. Process 12, 3421 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  28. Xiao, X., Li, Y.L.: Protecting qutrit-qutrit entanglement by weak measurement and reversal. Eur. Phys. J. D 67, 204 (2013)

    Article  ADS  Google Scholar 

  29. Hioe, F.T., Eberly, J.H.: N-level coherence vector and higher conservation laws in quantum optics and quantum mechanics. Phys. Rev. Lett. 47, 838 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  30. Checinska, A., Wodkiewicz, K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A 76, 052306 (2007)

    Article  ADS  Google Scholar 

  31. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  32. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  33. Korotkov, A.N.: Continuous quantum measurement of a double dot. Phys. Rev. B 60, 5737 (1999)

    Article  ADS  Google Scholar 

  34. Korotkov, A.N., Jordan, A.N.: Undoing a weak quantum measurement of a solid-state qubit. Phys. Rev. Lett. 97, 166805 (2006)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Acknowledgements This work was supported by the Natural Science Foundation of Shandong Province (Grant No. ZR2017MF040).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to JiaQiang Zhao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xia, Y., Li, Y. et al. Protecting Qutrit-Qutrit Entanglement Under Decoherence via Weak Measurement and Measurement Reversal. Int J Theor Phys 59, 3696–3704 (2020). https://doi.org/10.1007/s10773-020-04606-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04606-x

Keywords

Navigation