Model Prediction of Transverse Momentum Spectra of Strange Hadrons in pp Collisions at √s = 200 GeV


A simulation for transverse momentum spectra of strange particles yield, particle ratio and the average transverse momentum verses mass of the particles is reported at √s = 200 GeV in pp collisions by using various hadron production models. The models’ predictions, produced under the same conditions as the experimental data, are compared with the STAR measurements. Tsallis function is used to fit the experimental data as well as prediction of all the models. Though the models’ predictions compete the experimental data but none of the models meticulously reproduces all the distributions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  1. 1.

    Bocquet, G., Norton, A., Wang, H.Q., Karimäki, V., Kinnunen, R., Pimiä, M., Tuominiemi, J., Albajar, C., Revol, J.P., Sphicas, P., Sumorok, K., Tan, C.H., Tether, S., Buschbeck, B., Dibon, H., Lipa, P., Markytan, M., Neumeister, N.: Inclusive production of strange particles in collisions at with UA1. Phys. Lett. B. 366, 441–446 (1996)

    ADS  Google Scholar 

  2. 2.

    Ansorge, R.E., et al.: UA5 Collaboration. Nucl. Phys. B. 328, 36 (1989)

    ADS  Google Scholar 

  3. 3.

    Ansorge, R.E., et al.: UA5 Collaboration. Phys. Lett. B. 199, 311 (1987)

    ADS  Google Scholar 

  4. 4.

    Hagedorn, R.: Riv. Nuovo Cimento. 6(10), 1 (1984)

    Google Scholar 

  5. 5.

    Tsallis, C.: Possible generalization of Boltzmann-Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    ADS  MathSciNet  MATH  Google Scholar 

  6. 6.

    Tsallis, C., Mendes, R.S., Plastino, A.R.: The role of constraints within generalized nonextensive statistics. Physica A. 261, 534–554 (1998)

    ADS  Google Scholar 

  7. 7.

    Khachatryan, V., et al.: CMS, JHEP 05, 064 (2011)

  8. 8.

    Aamodt, K., et al.: ALICE Collaboration arXiv:1101.4110 [hep-ex] (2011)

  9. 9.

    B. I. Abelev, et al. STAR, Phys. Rev. C 75, 064901 (2007)

  10. 10.

    Khan, R., Ajaz, M., Ali, Y.: Int. J. Theor. Phys. 58, 1901 (2019)

    Google Scholar 

  11. 11.

    Khan, R., Ajaz, M., Ali, Y., Younis, H., Khan, G., Wazir, Z., Zaman, A., Khan, A.: Model Predictions of Charged-Particle Azimuthal Distributions and Forward-Backward Correlations in pp Interactions at $\sqrt{s}=900$ GeV. Commun. Theor. Phys. 71, 1172 (2019)

    ADS  Google Scholar 

  12. 12.

    Ajaz, M., Tufail, M., Ali, Y.: Study of the Production of Strange Particles in Proton–Proton Collisions at √s = 0.9 TeV. Arab. J. Sci. Eng. 45, 411–416 (2020)

    Google Scholar 

  13. 13.

    Ullah, S., Ajaz, M., Wazir, Z., Ali, Y., Khan, K.H., Younis, H.: Hadron production models’ prediction for pT distribution of charged hadrons in pp interactions at 7 TeV. Sci. Rep. 9, 11811 (2019)

    ADS  Google Scholar 

  14. 14.

    Ajaz, M., Khan, R., Ali, Y., Suleymanov, M.K.: Testing of model predictions of forward energy flow inppcollisions at s = 7 TeV. Mod. Phys. Lett. A. 35, 1950349 (2020)

    ADS  Google Scholar 

  15. 15.

    Wazir, Z., Gilani, A.R., Sulemanov, M.K., et al.: Transverse Momentum Distributions of Charged Hadrons Produced in He12C Collisions at 4.2A GeV/c. Phys. Elem. Part. At. Nucl. Lett. 16, 662–666 (2019)

    ADS  Google Scholar 

  16. 16.

    Ajaz, M., Khan, I., Suleymanov, M.K.: Mod. Phys. Lett. A. 34, 1950150 (2019)

    ADS  Google Scholar 

  17. 17.

    Khan, R., Ajaz, M.: Model predictions of charge particle densities and multiplicities in the forward region at 7 TeV mod. Phys. Lett. A. 35, 2050190 (2020).

    Article  Google Scholar 

  18. 18.

    Ajaz, M., Khan, I., Ali, Y., Khan, K.H.: Charged Particles pT Spectra and the Correlation between pT and all Charged Particles at √S = 900 GeV. Int. J. Theo. Phys. 58, 2027–2032 (2019)

    MATH  Google Scholar 

  19. 19.

    Ajaz, M., Ali, Y., Ullah, S., Ali, Q., Younis, H.: Study of Hadrons Produced in Proton—Carbon Interactions at 120 GeV/c Using Hadron-Production Models. Phys. Atom. Nucl. 82, 291–298 (2019)

    Google Scholar 

  20. 20.

    Wazir, Z., Kanwal, S., Khan, A., et al.: Model prediction study of the nearest neighbor spacing momentum distributions of central nucleus–nucleus interactions. Iran J. Sci. Technol. Trans. Sci. 244, 1225–1230 (2020).

  21. 21.

    Ajaz, M., Bilal, M., Ali, Y., Suleymanov, M.K., Khan, K.H.: Models prediction of hadrons production ratios inppcollisions at s = 7 TeV. Mod. Phys. Lett. A. 34, 1950090 (2019)

    ADS  Google Scholar 

  22. 22.

    Ajaz, M., Tufail, M., Ali, Y.: Production of light flavored charged hadron inppcollisions at 900 GeV with hadron production models. Mod. Phys. Lett. A. 34, 1950100 (2019)

    ADS  Google Scholar 

  23. 23.

    Ajaz, M., Maryam: Mod. Phys. Lett. A. 34, 1950148 (2019)

    ADS  Google Scholar 

  24. 24.

    Ali, Y., Ullah, S., Khattak, S.A., Ajaz, M.: Study of pion kaon and proton in proton–carbon interactions at 158 GeV/cusing hadron production models. Mod. Phys. Lett. A. 34, 1950078 (2019)

    ADS  Google Scholar 

  25. 25.

    Ullah, S., Ajaz, M., Ali, Y.: Spectra of strange hadrons and their role in neutrinos flux prediction. EPL. 123, 31001 (2018)

    ADS  Google Scholar 

  26. 26.

    Ullah, S., Ali, Y., Ajaz, M., Tabassam, U., Ali, Q.: π±, K±, protons and antiprotons production in proton–carbon interactions at 31 GeV/c using hadron production models. Int. J. Mod. Phys. A. 33, 1850108 (2018)

  27. 27.

    Ajaz, M., Ullah, S., Ali, Y., Younis, H.: Comparison of hadron production models for π±, k±, protons and antiprotons production in proton–carbon interactions at 60 GeV/c. Mod. Phys. Lett. A. 33, 1850038 (2018)

    ADS  Google Scholar 

  28. 28.

    Ajaz, M., Ali, Y., Ullah, S., Ali, Q., Tabassam, U.: Comparison of different hadron production models for the study of π±, K±, protons and antiprotons production in proton–carbon interactions at 90 GeV/c. Mod. Phys. Lett. A. 33, 1850079 (2018)

  29. 29.

    Ali, Y., Ali, Q., Haseeb, M., Ajaz, M., Tabassam, U.: Study of Pseudorapidity and Transverse-Momentum Distributions of Charged Particles in pp Interactions at √s = 13 TeV Using Hadron Production Models. Int. J. Theor. Phys. 58, 931–938 (2019)

    MATH  Google Scholar 

  30. 30.

    Ajaz, M., Khan, R., Bilal, M., Ali, Y., Khan, G., Younis, H., Khan, K.H., Wazir, Z., Zaman, A., Khan, A.: Models prediction of particles ratio in pp collisions at √s = 900 GeV. Indian J. Phys. 94, 719–724 (2020)

    ADS  Google Scholar 

  31. 31.

    Pierog, T., Werner, K.: EPOS Model and Ultra High Energy Cosmic Rays. Nucl. Phys. Proc. Suppl. 196, 102–105 (2009)

    ADS  Google Scholar 

  32. 32.

    Pierog, T., Karpenko, I., Katzy, J.M., Yatsenko, E., Werner, K.: EPOS LHC: Test of collective hadronization with data measured at the CERN Large Hadron Collider. Phys. Rev. C. 92, 034906 (2015)

    ADS  Google Scholar 

  33. 33.

    Gaisser, T.K., Halzen Phys, F.: "Soft" Hard Scattering in the Teraelectronvolt Range. Rev. Lett. 54, 1754–1756 (1985)

    ADS  Google Scholar 

  34. 34.

    Pancheri, G., Srivastava Phys, Y.N.: Low-pt jets and the rise with energy of the inelastic cross section. Lett. B. 182, 199–207 (1986)

    ADS  Google Scholar 

  35. 35.

    Capella, A., van Tran Thanh, J., Kwiecinski, J.: Phys. Rev. Lett. 58, 2015 (1987)

    ADS  Google Scholar 

  36. 36.

    Durand, L., Pi Phys, H.: QCD and rising cross sections. Rev. Lett. 58, 303–306 (1987)

    ADS  Google Scholar 

  37. 37.

    Sjostrand Int, T.: STATUS OF FRAGMENTATION MODELS. J. Mod. Phys. A. 3, 751–823 (1988)

    ADS  Google Scholar 

  38. 38.

    Good, M.L., Walker, W.D.: Phys. Rev. 120, 1857 (1960)

    ADS  Google Scholar 

  39. 39.

    Engel, R., Gaisser, T.K., Riehn, F., et al.: The Hague (Netherlands). Proc. 34th Int. Cosmic Ray Conf. 1, 1313 (2015)

    Google Scholar 

  40. 40.

    Andersson, B., Gustafson, G., Ingelman, G., Sjostrand, T.: Parton fragmentation and string dynamics. Phys. Rep. 97, 31–145 (1983)

    ADS  Google Scholar 

  41. 41.

    Andersson, B., Gustafson, G., Nilsson-Almqvist, B.: A model for low-pT hadronic reactions with generalizations to hadron-nucleus and nucleus-nucleus collisions. Nucl. Phys. B. 281, 289–309 (1987)

    ADS  Google Scholar 

  42. 42.

    Capella, A., Sukhatme, U., van Tran Thanh, J.: Z. Phys. 3, 329 (1980)

    Google Scholar 

  43. 43.

    Sjostrand, T., van Zijl, M.: A multiple-interaction model for the event structure in hadron collisions. Phys. Rev. D. 36, 2019–2041 (1987)

    ADS  Google Scholar 

  44. 44.

    Bengtsson, H.-U., Sjostrand, T.: The Lund Monte Carlo for hadronic processes — PYTHIA version 4.8. Comp. Phys. Commun. 46, 43–82 (1987)

    ADS  Google Scholar 

  45. 45.

    Gyulassy, M., Levai, P., Vitev, I.: Non-Abelian Energy Loss at Finite Opacity. Phys. Rev. Lett. 85, 5535–5538 (2000)

    ADS  Google Scholar 

  46. 46.

    Wang, X.-N.: Role of multiple minijets in high-energy hadronic reactions. Phys. Rev. D. 43, 104–112 (1991)

    ADS  Google Scholar 

  47. 47.

    Wang, X.-N., Gyulassy, M.: hijing: A Monte Carlo model for multiple jet production inpp,pA, andAAcollisions. Phys. Rev. D. 44, 3501–3516 (1991)

    ADS  Google Scholar 

  48. 48.

    Wang, X.-N., Gyulassy, M.: Systematic study of particle production inp+p (p¯)collisions via the HIJING model. Phys. Rev. D. 45, 844–856 (1992)

    ADS  Google Scholar 

  49. 49.

    The CRMC (v1r7.0) project homepage: (Last modified: Feb, 2019)

  50. 50.

    Bierlich, C., Buckley, A., Butterworth, J., et al.: Robust independent validation of experiment and theory: rivet version 3. SciPost Phys. 8, 026 (2020)

    ADS  Google Scholar 

  51. 51.

    Wilk, G., Wlodarczyk, Z.: Interpretation of the Nonextensivity Parameterqin Some Applications of Tsallis Statistics and Lévy Distributions. Phys. Rev. Lett. 84, 2770–2773 (2000)

    ADS  Google Scholar 

  52. 52.

    Martin, A.D., Stirling, W.J., Roberts, R.G.: Parton distributions of the proton. Phys. Rev. D. 50, 6734–6752 (1994)

    ADS  Google Scholar 

Download references


This work is supported by the Higher Education Commission (HEC) of Pakistan by the Grant No. 20-3379/NRPU/R&D/HEC/2014.

Author information



Corresponding author

Correspondence to Muhammad Ajaz.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ajaz, M., Khan, R., Wazir, Z. et al. Model Prediction of Transverse Momentum Spectra of Strange Hadrons in pp Collisions at √s = 200 GeV. Int J Theor Phys 59, 3338–3347 (2020).

Download citation


  • RHIC energies
  • Light flavoured hadrons
  • Models predictions