Skip to main content
Log in

Tripartite Entanglement Dynamics in the System Consisting of Three Damping Jaynes-Cummings Models

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we consider the situation that three identical two-level atoms resonantly interact with three distant single-mode optical cavities via a one-photon hopping separately, and there exist the phenomena of atom-decay and cavity-decay. Under Jaynes-Cummings model the time evolution of the system is given. The tripartite negativity is used to quantify the degree of tripartite entanglement. The tripartite entanglement dynamics among atoms and among cavities are studied. The influences of the atom-decay and the cavity-decay on tripartite entanglement are discussed. The results obtained using the numerical method show that the tripartite entanglement among atoms and that among cavities all display damping oscillation behavior. On the other hand, as the atomic decay rate increases, their decays are accelerated, and so do they with the increase of cavity decay rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaynes, E.T., Cummings, F.W.: Proc. IEEE. 51, 89 (1963)

    Article  Google Scholar 

  2. Zhou, P., Hu, Z.L., Peng, J.S.: J. Mod. Opt. 39(1), 39 (1992)

    Article  ADS  Google Scholar 

  3. Tian, Y.H., Peng, J.S.: Acta Phys. Sin. 48, 2060 (1999) (in chinese)

    Google Scholar 

  4. Buzek, V.: Light Squeezing in the Jaynes-Cummings Model with Intensity-dependent Coupling. J. Mod. Opt. 36(9), 1151–1162 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bougouffa, S., Ficek, Z.: Effect of retardation in the atom–field interaction on entanglement in a double Jaynes–Cummings system. J. Phys. B Atomic Mol. Phys. 46, 224006 (2013)

    Article  ADS  Google Scholar 

  6. Qiang, W.C., Sun, G.H., Dong, Q., et al.: Quantum Inf. Process. 17, 90 (2018)

    Article  ADS  Google Scholar 

  7. Bennett, C.H., Brassard, G., Crepaeu, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  8. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  9. Li, X., Pan, Q., Jiang, J., et al.: Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam. Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  10. Wootters, W.K.: Phys. Rev. Lett. 80(10), 2245 (1998)

    Article  ADS  Google Scholar 

  11. Vidal, G., Werner, R.F.: Phys. Rev. A. 65, 032314 (2002)

    Article  ADS  Google Scholar 

  12. Brub, D., Vivincenzo, D.P., Ekert, A., et al.: Phys. Rev. A. 57, 2368 (1998)

    Article  ADS  Google Scholar 

  13. Karlsson, A., Bourennance, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Hao, J.C., Li, C.F., Guo, G.C.: Phys. Rev. A. 63, 054301 (2001)

    Article  ADS  Google Scholar 

  15. Liao, X.P., Fang, M.F., Zheng, X.J., et al.: Chin. Phys. 15(2), 353 (2006)

    Article  Google Scholar 

  16. Sabin, C., Garcia, A.G.: Eur. Phys. J. D. 48(3), 435 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  17. Khan, S., Jan, M.: Int. J. Theor. Phys. 55(3), 1515 (2016)

    Article  Google Scholar 

  18. Carvalho, A.R.R., Mintert, F., Buchleitner, A.: Phys. Rev. Lett. 93, 230501 (2004)

    Article  ADS  Google Scholar 

  19. Laskowski, W., Markiewicz, M., Paterek, T., Żukowski, M.: Correlation-tensor criteria for genuine multiqubit entanglement. Phys. Rev. A. 84, 062305 (2011)

    Article  ADS  Google Scholar 

  20. Kourbolagh, Y.A., Azhdargalam, M.: Phys. Rev. A. 99, 012304 (2019)

    Article  ADS  Google Scholar 

  21. Weinstein, Y.S.: Phys. Rev. A. 79, 012318 (2019)

    Article  ADS  Google Scholar 

  22. Kim, K.I., Li, H.M., Zhao, B.K.: Genuine Tripartite Entanglement Dynamics and Transfer in a Triple Jaynes-Cummings Model. Int. J. Theor. Phys. 55, 241–254 (2016)

    Article  Google Scholar 

  23. Guo, G.C., Yang, C.P.: Spontaneous emission from two two-level entangled atoms. Physica A. 260, 173–185 (1998)

    Article  ADS  Google Scholar 

  24. Yang, C.P., Guo, G.C.: Phys. Lett. A. 255, 129 (1999)

    Article  ADS  Google Scholar 

  25. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Step-by-Step Engineered Multiparticle Entanglement. Science. 288, 2024–2028 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao-Ming Lu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, DM. Tripartite Entanglement Dynamics in the System Consisting of Three Damping Jaynes-Cummings Models. Int J Theor Phys 59, 3217–3223 (2020). https://doi.org/10.1007/s10773-020-04574-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04574-2

Keywords

Navigation