Continuous-Variable Quantum Computing and its Applications to Cryptography

Abstract

We propose a quantum cryptography based on an algorithm for determining a function using continuous-variable entangled states. The security of our cryptography is based on the Ekert 1991 protocol, which uses an entangled state. Eavesdropping destroys the entangled state. Alice selects a secret function from the very large number of possible function types. Bob’s aim is to determine the selected function (a key) without an eavesdropper learning it. In order for both Alice and Bob to be able to select the same function classically, in the worst case Bob requires a very large number of queries to Alice. In the quantum case however, Bob requires just a single query. By measuring the single entangled state, which is sent to him by Alice, Bob can obtain the function that Alice has selected. This quantum key distribution method is faster than the very large number of classical queries that would be required in the classical case.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Braunstein, S.L.: . Phys. Rev. Lett. 80, 4084 (1998)

    ADS  Article  Google Scholar 

  2. 2.

    Braunstein, S.L.: . Nature (London) 394, 47 (1998)

    ADS  Article  Google Scholar 

  3. 3.

    Lloyd, S., Braunstein, S.L.: . Phys. Rev. Lett. 82, 1784 (1999)

    ADS  MathSciNet  Article  Google Scholar 

  4. 4.

    Ralph, T.C.: . Phys. Rev. A 61, 010303(R) (1999)

    Article  Google Scholar 

  5. 5.

    Hillery, M.: . Phys. Rev. A 61, 022309 (2000)

    ADS  Article  Google Scholar 

  6. 6.

    Reid, M.D.: . Phys. Rev. A 62, 062308 (2000)

    ADS  Article  Google Scholar 

  7. 7.

    Gottesman, D., Preskill, J.: . Phys. Rev. A 63, 022309 (2001)

    ADS  Article  Google Scholar 

  8. 8.

    Grosshans, F., Grangier, P.: . Phys. Rev. Lett. 88, 057902 (2002)

    ADS  Article  Google Scholar 

  9. 9.

    Bartlett, S.D., Sanders, B.C., Braunstein, S.L., Nemoto, K.: . Phys. Rev. Lett. 88, 097904 (2002)

    ADS  Article  Google Scholar 

  10. 10.

    Nagata, K., Nakamura, T.: . Open Access Library J. 2, e1798 (2015)

    Google Scholar 

  11. 11.

    Nagata, K., Nakamura, T.: . Int. J. Theor. Phys. 56, 2086 (2017)

    Article  Google Scholar 

  12. 12.

    Nagata, K., Nakamura, T., Farouk, A.: . Int. J. Theor. Phys. 56, 2887 (2017)

    Article  Google Scholar 

  13. 13.

    Nguyen, D.M., Kim, S.: . Int. J. Theor. Phys. 58, 71 (2019)

    Article  Google Scholar 

  14. 14.

    Nguyen, D.M., Kim, S.: . Int. J. Theor. Phys. 58, 2043 (2019)

    Article  Google Scholar 

  15. 15.

    Diep, D.N., Giang, D.H.: . Int. J. Theor. Phys. 56, 2797 (2017)

    Article  Google Scholar 

  16. 16.

    Nagata, K., Diep, D.N., Nakamura, T.: . Asian J. Math. Phys. 4(1), 7 (2020)

    Google Scholar 

  17. 17.

    Ekert, A.K.: . Phys. Rev. Lett. 67, 661 (1991)

    ADS  MathSciNet  Article  Google Scholar 

  18. 18.

    Nagata, K., Geurdes, H., Patro, S.K., Heidari, S., Farouk, A., Nakamura, T.: . Int. J. Theor. Phys. 58, 3694 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

We thank Professor Shahrokh Heidari, Professor Germano Resconi, Professor Santanu Kumar Patro, Professor Tadao Nakamura, Professor Jaewook Ahn, and Professor Han Geurdes for valuable comments.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Ethics declarations

Conflict of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The Phase Kick-Back Formation

Appendix: The Phase Kick-Back Formation

We have the following formula by the phase kick-back formation [18]:

$$ \begin{array}{@{}rcl@{}} U_{f}|x\rangle|\phi_{d}\rangle =\omega^{f(x)}|x\rangle|\phi_{d}\rangle. \end{array} $$
(1)

In what follows, we discuss the rationale behind the above relation (1). Consider the action of the Uf gate on the state |x〉|ϕd〉. Each summand in |ϕd〉 is of the form ωdj|j〉. We observe that

$$ \begin{array}{@{}rcl@{}} U_{f}\omega^{d-j}|x\rangle|j\rangle =\omega^{d-j} |x\rangle|(j+f(x))\ \text{mod}\ d\rangle. \end{array} $$
(2)

A variable k is introduced such that f(x) + j = k, from which it follows that dj = d + f(x) − k. Thus, (2) becomes

$$ \begin{array}{@{}rcl@{}} U_{f}\omega^{d-j}|x\rangle|j\rangle =\omega^{f(x)} \omega^{d-k}|x\rangle|k\ \text{mod}\ d\rangle. \end{array} $$
(3)

If k < d we have that |k mod d〉 = |k〉 and thus the summands in |ϕd〉 for which k < d are transformed as follows:

$$ \begin{array}{@{}rcl@{}} U_{f}\omega^{d-j}|x\rangle|j\rangle =\omega^{f(x)}\omega^{d-k}|x\rangle|k\rangle. \end{array} $$
(4)

On the other hand, as both f(x) and j are bounded from above by d, k is strictly less than 2d. Thus, when dk < 2d, we have |k mod d〉 = |kd〉. Let kd = m. We have

$$ \begin{array}{@{}rcl@{}} &&\omega^{f(x)}\omega^{d-k}|x\rangle|k\ \text{mod}\ d\rangle =\omega^{f(x)}\omega^{-m}|x\rangle|m\rangle\\ &&=\omega^{f(x)}\omega^{d-m}|x\rangle|m\rangle. \end{array} $$
(5)

Hence, the summands in |ϕd〉 for which kd are transformed as follows:

$$ \begin{array}{@{}rcl@{}} U_{f}\omega^{d-j}|x\rangle|j\rangle =\omega^{f(x)}\omega^{d-m}|x\rangle|m\rangle. \end{array} $$
(6)

Finally, regarding (4) and (6), we have

$$ \begin{array}{@{}rcl@{}} U_{f}|x\rangle|\phi_{d}\rangle=\omega^{f(x)}|x\rangle|\phi_{d}\rangle. \end{array} $$
(7)

Therefore, the relation (1) holds.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Diep, D.N., Nagata, K. & Wong, R. Continuous-Variable Quantum Computing and its Applications to Cryptography. Int J Theor Phys 59, 3184–3188 (2020). https://doi.org/10.1007/s10773-020-04571-5

Download citation

Keywords

  • Quantum cryptography and communication security
  • Quantum communication
  • Quantum algorithms
  • Quantum computation
  • Formalism