Skip to main content
Log in

Quantum Teleportation Protocol of Arbitrary Quantum States by Using Quantum Fourier Transform

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this article, we first propose a quantum teleportation protocol to teleport the arbitrary quantum states via an arbitary quantum entanglement states. We find the projection base which Alice use to project her quantum states by quantum Fourier transform.According to the principle of quantum mechanics, we derive the unitary operations which Bob needs to do. The Unitary operations make the qubits which Bob holds become the states which Alice want to teleport. Compare to other protocols, we show that our protocol can solve more general problems and can be used in more complex situations. Our method of finding the projective basis is universal and convenient, and it could have potential application in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.: Quantum computation and quantum information (2002)

  2. Duan, L.-M., Lukin, M., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature 414(6862), 413 (2001)

    Article  ADS  Google Scholar 

  3. Bennett, C.H., Brassard, G.: Quantum public key distribution system. IBM Technical Disclosure Bulletin 28(7), 3153–3163 (1985)

    Google Scholar 

  4. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  5. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Dense coding in experimental quantum communication. Phys. Rev. Lett. 76(25), 4656 (1996)

    Article  ADS  Google Scholar 

  6. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Caleffi, M., Cacciapuoti, A.S., Bianchi, G.: Quantum internet: from communication to distributed computing! arXiv:1805.04360 (2018)

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575 (1997)

    Article  ADS  Google Scholar 

  10. Zhang, B., Liu, X.-t., Wang, J., Tang, C.-j.: Quantum teleportation of an arbitrary n-qubit state via ghz-like states. Int. J. Theor. Phys. 55(3), 1601–1611 (2016)

    Article  Google Scholar 

  11. Gao, C., Ma, S.Y., Chen, W.L.: Controlled remote preparation via the brown state with no restriction. Int. J. Theor. Phys. 55(5), 2643–2652 (2016)

    Article  Google Scholar 

  12. Chen, X.-B., Ma, S.-Y., Su, Y., Zhang, R., Yang, Y.-X.: Controlled remote state preparation of arbitrary two and three qubit states via the brown state. Quantum Inf. Process 11(6), 1653–1667 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  13. Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)

    Article  Google Scholar 

  14. Simon, C.: Towards a global quantum network. Nat. Photonics 11 (11), 678 (2017)

    Article  ADS  Google Scholar 

  15. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science. Ieee, pp 124–134 (1994)

  16. Song, D., He, C., Cao, Z., Chai, G.: Quantum teleportation of multiple qubits based on quantum fourier transform. IEEE Commun. Lett. 22(12), 2427–2430 (2018)

    Article  Google Scholar 

  17. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  ADS  Google Scholar 

  18. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the einstein-podolsky-rosen pair block. Phys. Rev. A 68(4), 113–114 (2003)

    Google Scholar 

  19. Hu, J., Yu, B., Jing, M., Xiao, L., Jia, S., Qin, G., Long, G.: Experimental quantum secure direct communication with single photons (2015)

Download references

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61701401, the New Star Program of Science and Technology in Shaanxi Province under Grant 2019KJXX-061, the Natural Science Foundation of Shaanxi Province 2019JM-591, the National Natural Science Foundation youth Program: 61801385, the Natural Science Foundation of Shaanxi Province 2020JQ-602 and the Postdoctoral General Fund 221628

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen He.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Z., Zhang, C., He, C. et al. Quantum Teleportation Protocol of Arbitrary Quantum States by Using Quantum Fourier Transform. Int J Theor Phys 59, 3174–3183 (2020). https://doi.org/10.1007/s10773-020-04570-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04570-6

Keywords

Navigation