Skip to main content
Log in

Bidirectional Controlled Quantum Teleportation Using Eight-Qubit Quantum Channel in Noisy Environments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, a novel protocol is proposed for bidirectional controlled quantum teleportation (BCQT) in which a quantum channel is used with the eight-qubit entangled state. Using the protocol, two users can teleport an arbitrary entangled state and a pure two-qubit state (QBS) to each other simultaneously under the permission of a third party in the role of controller. This protocol is based on the controlled-not operation, appropriate single-qubit (SIQ) UOs, and SIQ measurements in the Z and X-basis. Also, in this paper, a new criterion of merit named as (predictability of the controller’s qubit (QB) by the eavesdropper) is introduced, and the protocol is improved based on it. Then, the proposed protocol is investigated in two typical noisy channels, the amplitude-damping noise (ADN) and the phase-damping noise (PDN). The analysis of the protocol in the noisy environment shows that it only depends on the amplitude of the initial state and the decoherence noisy rate (DR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Shi, B.-S., Tomita, A.: Teleportation of an unknown state by W state. Phys. Lett. A. 296, 161–164 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  4. Ursin, R., Jennewein, T., Aspelmeyer, M., Kaltenbaek, R., Lindenthal, M., Walther, P., Zeilinger, A.: Communications: quantum teleportation across the Danube. Nature. 430, 849–849 (2004)

    Article  ADS  Google Scholar 

  5. Agrawal, P., Pati, A.: Perfect teleportation and superdense coding with W states. Phys. Rev. A. 74, 062320 (2006)

    Article  ADS  Google Scholar 

  6. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A. 77, 032321 (2008)

    Article  ADS  Google Scholar 

  7. Tang, S.-Q., Shan, C.-J., Zhang, X.-X.: Quantum teleportation of an unknown two-atom entangled state using four-atom cluster state. Int. J. Theor. Phys. 49, 1899–1903 (2010)

    Article  MathSciNet  Google Scholar 

  8. Nie, Y.-y., Li, Y.-h., Liu, J.-c., Sang, M.-h.: Perfect teleportation of an arbitrary three-qubit state by using W-class states. Int. J. Theor. Phys. 50, 3225–3229 (2011)

    Article  MathSciNet  Google Scholar 

  9. Yuan-Hua, L., Yi-You, N.: Quantum information splitting of an arbitrary three-atom state by using W-class states in cavity QED. Commun. Theor. Phys. 57, 995 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  10. Luo, M.-X., Deng, Y.: Quantum splitting an arbitrary three-qubit state with χ-state. Quantum Inf. Process. 1–12 (2013)

  11. Li, Y.-h., Li, X.-l., Sang, M.-h., Nie, Y.-y.: Splitting unknown two-qubit state using five-qubit entangled state. Int. J. Theor. Phys. 53, 111–115 (2014)

    Article  Google Scholar 

  12. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  Google Scholar 

  13. Sang, M.-h.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. Phys. 55(3), 1333–1335 (2016)

    Article  MathSciNet  Google Scholar 

  14. Zhou, R.-G., Li, X., Qian, C., Ian, H.: Quantum bidirectional teleportation 2↔ 2 or 2↔ 3 Qubit teleportation protocol via 6-Qubit entangled state. Int. J. Theor. Phys. 59(1), 166–172 (2020)

    Article  MathSciNet  Google Scholar 

  15. Koochaki, F., Sharifi, I., Talebi, H.A.: A novel architecture for cooperative remote rehabilitation system. Comput. Electr. Eng. 56, 715–731 (2016)

    Article  Google Scholar 

  16. Karlsson, A., Bourennane, M.: Quantum teleportation using three-particle entanglement. Phys. Rev. A. 58, 4394–4400 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  17. Yang, C.-P., Han, S.: A scheme for the teleportation of multiqubit quantum information via the control of many agents in a network. Phys. Lett. A. 343, 267–273 (2005)

    Article  ADS  Google Scholar 

  18. Deng, F.-G., Li, C.-Y., Li, Y.-S., Zhou, H.-Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A. 72, 022338 (2005)

    Article  ADS  Google Scholar 

  19. Wang, Y.-H., Song, H.-S.: Preparation of partially entangled W state and deterministic multi-controlled teleportation. Opt. Commun. 281, 489–493 (2008)

    Article  ADS  Google Scholar 

  20. Song-Song, L., Yi-You, N., Zhi-Hui, H., Xiao-Jie, Y., Yi-Bin, H.: Controlled teleportation using four-particle cluster state. Commun. Theor. Phys. 50, 633–636 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wang, X.-W., Su, Y.-H., Yang, G.-J.: Controlled teleportation against uncooperation of part of supervisors. Quantum Inf. Process. 8, 319–330 (2009)

    Article  MathSciNet  Google Scholar 

  22. Tian-Yin, W., Qiao-Yan, W.: Controlled quantum teleportation with bell states. Chinese Physics B. 20, 040307 (2011)

    Article  Google Scholar 

  23. Zha, X.-W., Zou, Z.-C., Qi, J.-X., Song, H.-Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theor. Phys. 52, 1740–1744 (2013)

    Article  MathSciNet  Google Scholar 

  24. Shukla, C., Banerjee, A., Pathak, A.: Bidirectional controlled teleportation by using 5-qubit states: a generalized view. Int. J. Theor. Phys. 52, 3790–3796 (2013)

    Article  Google Scholar 

  25. S. Hassanpour and M. Houshmand: Bidirectional quantum controlled teleportation by using EPR states and entanglement swapping, arXiv preprint arXiv:1502.03551, (2015)

  26. Amiri, I.S., Alavi, S.E., Bahadoran, M., Afroozeh, A., Ahmad, H.: Nanometer bandwidth Soliton generation and experimental transmission within nonlinear Fiber optics using an add-drop filter system. J. Comput. Theor. Nanosci. 12, 221–225 (Feb 2015)

    Article  Google Scholar 

  27. Hong, W.-q.: Asymmetric bidirectional controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 384–387 (2016)

    Article  Google Scholar 

  28. Sang, M.-h.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. Phys. 55, 380–383 (2016)

    Article  Google Scholar 

  29. Li, Y.-h., Jin, X.-m.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15, 929–945 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Li, Y.-h., Nie, L.-p., Li, X.-l., Sang, M.-h.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. Phys. 55, 3008–3016 (2016)

    Article  Google Scholar 

  31. Choudhury, B.S., Samanta, S.: Asymmetric bidirectional 3⇔ 2 qubit teleportation protocol between Alice and bob via 9-qubit cluster state. Int. J. Theor. Phys. 56(10), 3285–3296 (2017)

    Article  MathSciNet  Google Scholar 

  32. Zheng, S.-B.: Scheme for approximate conditional teleportation of an unknown atomic state without the bell-state measurement. Phys. Rev. A. 69, 064302 (2004)

    Article  ADS  Google Scholar 

  33. Riebe, M., Häffner, H., Roos, C., Hänsel, W., Benhelm, J., Lancaster, G., et al.: Deterministic quantum teleportation with atoms. Nature. 429, 734–737 (2004)

    Article  ADS  Google Scholar 

  34. Bouwmeester, D., Pan, J.-W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature. 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  35. Wang, X.-L., Cai, X.-D., Su, Z.-E., Chen, M.-C., Wu, D., Li, L., Liu, N.L., Lu, C.Y., Pan, J.W.: Quantum teleportation of multiple degrees of freedom of a single photon. Nature. 518, 516–519 (2015)

    Article  ADS  Google Scholar 

  36. Metcalf, B.J., Spring, J.B., Humphreys, P.C., Thomas-Peter, N., Barbieri, M., Kolthammer, W.S., Jin, X.M., Langford, N.K., Kundys, D., Gates, J.C., Smith, B.J., Smith, P.G.R., Walmsley, I.A.: Quantum teleportation on a photonic chip. Nat. Photonics. 8, 770–774 (2014)

    Article  ADS  Google Scholar 

  37. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun. Theor. Phys. 39, 537–542 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  38. Zadeh, M.S.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a two-Qubit state by using eight-Qubit entangled state as a Quantum Channel. Int. J. Theor. Phys. 1–12 (2017)

  39. N. Nickerson: Practical Fault-Tolerant Quantum Computing, (2015)

  40. Eisert, J., Jacobs, K., Papadopoulos, P., Plenio, M.: Optimal local implementation of nonlocal quantum gates. Phys. Rev. A. 62, 052317 (2000)

    Article  ADS  Google Scholar 

  41. Chen, Y.: Bidirectional quantum controlled teleportation by using a genuine six-qubit entangled state. Int. J. Theor. Phys. 54(1), 269–272 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Amiri.

Ethics declarations

Declarations of Interest

none.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarvaghad-Moghaddam, M., Ramezani, Z. & Amiri, I.S. Bidirectional Controlled Quantum Teleportation Using Eight-Qubit Quantum Channel in Noisy Environments. Int J Theor Phys 59, 3156–3173 (2020). https://doi.org/10.1007/s10773-020-04569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04569-z

Keywords

Navigation