Skip to main content
Log in

Quantum Voting Scheme with Greenberger-Horne-Zeilinger States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We propose a quantum voting scheme with Greenberger-Horne-Zeilinger (GHZ) states. In this scheme, quantum sequences that are formed by different particles of different GHZ states are sent to other participants respectively. Because of the correlation of different particles in a GHZ state, different participants perform a same measurement on each particle in the sequence that they received in order to obtain a same measurement outcome. To reduce the overhead of quantum transmissions, the participants publish their results on a bulletin board. According to the information on the bulletin board, voters can check whether their voting information is correct. If an attacker tampers with the voting information, his behavior can be discovered during the verification process. Analyses show that our new scheme has high efficiency and can withstand all the known attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jan, J.K., Tai, C.C.: A secure electronic voting protocol with IC cards. J. Syst. Software. 39(12), 93–101 (1997)

    Google Scholar 

  2. Ku, W.C., Wang, S.D.: A secure and practical electronic voting scheme. Comput. Commun. 22(3), 279–286 (1999)

    Google Scholar 

  3. Hillery, M.: Quantum voting and privacy ptotection: first steps. Int. Soc. Opt. Eng. (2006)

  4. Vaccaro, J.A., Spring, J., Chefles, A.: Quantum protocols for anonymous voting and surveying. Phys. Rev. A 75(1), 012333 (2007)

    ADS  Google Scholar 

  5. Tian, J.H., Zhang, J.Z., Li, Y.P.: A voting protocol based on the controlled quantum operation teleportation. Int. J. Theor. Phys. 55(5), 2303–2310 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Wen, X.J., Cai, X.J.: Secure quantum voting protocol. J. Shangdong Univ. (Natural Science) 46(9), 9–13 (2011)

    MathSciNet  Google Scholar 

  7. Yi, Z., He, G.Q., Zeng, G.H.: Quantum voting protocol using two-mode squeezed states. Acta. Phys. Sin. 58(5), 3166–3172 (2009)

    Google Scholar 

  8. Horoshko, D., Kilin, S.: Quantum anonymous voting with anonymity check. Phys. Lett. A 375, 1172–1175 (2011)

    ADS  MathSciNet  MATH  Google Scholar 

  9. Guo, F.Z., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis and improvement of two GHZ-State-Based QSDC protocols. Chinese Phys. Lett. 27(9), 090307 (2010)

    ADS  Google Scholar 

  10. Gao, F., Qin, S.J., Wen, Q.Y.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger-Horne-Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    ADS  Google Scholar 

  11. Yang, Y.G., Wang, H.Y., Jia, X.: A quantum protocol for (t,n)-threshold identity authentication based on greenberger-horne-zeilinger states. Int. J. Theor. Phys. 52(2), 524–530 (2013)

    MathSciNet  MATH  Google Scholar 

  12. Fan, L., Zhang, K.J., Qin, S.J.: A novel quantum blind signature scheme with four-particle GHZ states. Int. J. Theor. Phys. 55(2), 1028–1035 (2016)

    MathSciNet  MATH  Google Scholar 

  13. Wang, T.Y., Wen, Q.Y., Chen, X.B.: Cryptanalysis and improvement of a multi-user quantum key distribution protocol. Opt. Commun. 283(24), 5261–5263 (2010)

    ADS  Google Scholar 

  14. Chen, X.B., et al.: Cryptanalysis of secret sharing with a single d-level quantum system. Quantum Inf. Process. 17, 225 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Jiang, D.H., Hu, Q.Z., Liang, X.Q., Xu, G.B.: A novel quantum multi-signature protocol based on locally indistinguishable orthogonal product states. Quantum Inf. Process. 18, 268 (2019)

    ADS  MathSciNet  Google Scholar 

  16. Xia, Z.H., Wang, X.H., Zhang, L.G., et al.: A privacy-preserving and copy-deterrence content-based image retrieval scheme in cloud computing. IEEE. T. Inf. Foren. Sec. 11(11), 2594–2608 (2016)

    Google Scholar 

  17. Wang, T.Y., Li, Y.P., Zhang, R.L.: Analysis of counterfactual quantum certificate authorization. Int. J. Theor. Phys. 55(12), 5331–5335 (2016)

    MATH  Google Scholar 

  18. Cao, H.J., Ding, L.Y., Yu, Y.F., et al.: A electronic voting scheme achieved by using quantum proxy signature. Int. J. Theor. Phys. 55(9), 4081–4088 (2016)

    MathSciNet  MATH  Google Scholar 

  19. Cao, H.J., Ding, L.Y., Jiang, X.L., Li, P.F.: A new proxy electronic voting scheme achieved by six-particle entangled states. Int. J. Theor. Phys. 57 (3), 674–681 (2018)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, J.L., Xie, S.C., Zhang, J.Z.: An elaborate secure quantum voting scheme. Int. J. Theor. Phys. 56(10), 3019–3028 (2017)

    ADS  MATH  Google Scholar 

  21. Jiang, D.H., Xu, Y.L., Xu, G.B.: Arbitrary quantum signature based on local indistinguishability of orthogonal product states. Int. J. Theor. Phys. 58 (3), 1036–1045 (2019)

    MathSciNet  MATH  Google Scholar 

  22. Zhang, K.J., Zhang, X., Jia, H.Y., Zhang, L.: A new n-party quantum secret sharing model based on multiparty entangled states. Quantum Inf. Process. 18(3), 21 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Zhang, K.J., Zhang, L., Song, T.T., Yang, Y.H.: A potential application in quantum networks-Deterministic quantum operation sharing schemes with Bell states. Sci. China Phys. Mech. 59(6), 660302 (2016)

    Google Scholar 

  24. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled states. Int. J. Theor. Phys. 50(6), 1793–1802 (2011)

    MATH  Google Scholar 

  25. Jiang, D.H., Wang, J., Liang, X.Q., et al.: Quantum voting scheme based on locally indistinguishable orthogonal product states. Int. J. Theor. Phys. 59, 436–444 (2020)

    MathSciNet  MATH  Google Scholar 

  26. Lin, J., Hwang, T.: An enhancement on Shi et al.’s multiparty quantum secret sharing protocol. Opt. Commun. 284(5), 1468–1471 (2011)

    ADS  Google Scholar 

  27. Shi, W.M., Zhou, Y.H., Yang, Y.G.: A restricted quantum deniable authentication protocol applied in electronic voting system. Optik 142, 9–12 (2017)

    ADS  Google Scholar 

  28. Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption. Quantum Inf. Process. 16(3), 70 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  29. Zhang, J.L., Zhang, J.Z., Xie, S.C.: A choreographed distributed electronic voting scheme. Int. J. Theor. Phys. 57(9), 2676–2686 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by Shandong Provincial Natural Science Foundation (Grants No. ZR2019MF023), National Natural Science Foundation of China (Grants No. 61701343) and SDUST Research Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Huan Jiang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Xu, GB. & Jiang, DH. Quantum Voting Scheme with Greenberger-Horne-Zeilinger States. Int J Theor Phys 59, 2599–2605 (2020). https://doi.org/10.1007/s10773-020-04529-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04529-7

Keywords

Navigation