Skip to main content
Log in

The Discrete Center-of-Mass Tomogram

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new tomographic function is introduced for the description of qudit states. We utilize the discrete space phase formalism and an analogy with continuous variables systems. It is proved that the new function is nonnegative, normalized and that it unambiguously determines the state. The new function is called the discrete center-of-mass tomogram as it has a counterpart used to determine the states of continuous variables systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Landau, L.: Das Dämpfungsproblem in der Wellenmechanik. Z. Physik 45, 430–441 (1927) https://doi.org/10.1007/BF01343064

    MATH  ADS  Google Scholar 

  2. Neumann, J. von: Wahrscheinlichkeitstheoretischer Aufbau der Quantenmechanik. Gött. Nach. 1927, 245–272 (1927)

    MATH  Google Scholar 

  3. Wigner, E.: On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 40, 749–759 (1932) https://doi.org/10.1103/PhysRev.40.749

    MATH  ADS  Google Scholar 

  4. Husimi, K.: Some Formal Properties of the Density Matrix. Proc. Phys. Math. Soc. Jpn. 22, 264–314 (1940) https://doi.org/10.11429/ppmsj1919.22.4_264

    MATH  Google Scholar 

  5. Sudarshan, E.C.G.: Equivalence of Semiclassical and Quantum Mechanical Descriptions of Statistical Light Beams. Phys. Rev. Lett. 10, 277–279 (1963) https://doi.org/10.1103/PhysRevLett.10.277

    MathSciNet  MATH  ADS  Google Scholar 

  6. Glauber, R.J.: Coherent and Incoherent States of the Radiation Field. Phys. Rev. 131, 2766–2788 (1963) https://doi.org/10.1103/PhysRev.131.2766

    MathSciNet  MATH  ADS  Google Scholar 

  7. Kano, Y.: A New Phase-Space Distribution Function in the Statistical Theory of the Electromagnetic Field. J. Math. Phys. 6, 1913–1915 (1965) https://doi.org/10.1063/1.1704739

    MathSciNet  ADS  Google Scholar 

  8. Mancini, S., MaNko, V.I., Tombesi, P.: Symplectic tomography as classical approach to quantum systems. Physics Letters A 213, 1–6 (1996) https://doi.org/10.1016/0375-9601(96)00107-7

    MathSciNet  MATH  ADS  Google Scholar 

  9. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013 (2009) https://doi.org/10.1088/0031-8949/79/06/065013

    MATH  ADS  Google Scholar 

  10. Robertson, H.P.: The Uncertainty Principle. Phys. Rev. 34, 163–164 (1929) https://doi.org/10.1103/PhysRev.34.163

    ADS  Google Scholar 

  11. Schrödinger, E.: Die gegenwärtige Situation in der Quantenmechanik. Naturwissenschaften 23, 844–849 (1935) https://doi.org/10.1007/BF01491987

    MATH  ADS  Google Scholar 

  12. Curtright, T.L., Zachos, C.K.: Quantum Mechanics in Phase Space. Asia Pac. Phys. Newslett 01, 37–46 (2012) https://doi.org/10.1142/S2251158X12000069

    Google Scholar 

  13. Werner, R.F.: The classical limit of quantum theory arXiv:quant-ph/9504016 (1995)

  14. Kenfack, A., Życzkowski, K.: Negativity of the Wigner function as an indicator of non-classicality. Journal of Optics B: Quantum and Semiclassical Optics 6, 396 (2004)

    MathSciNet  ADS  Google Scholar 

  15. Schleich, W.P.: Quantum optics in phase space john wiley & sons (2011)

  16. Weinbub, J., Ferry, D.K.: Recent advances in Wigner function approaches. Applied Physics Reviews 5, 041104 (2018) https://doi.org/10.1063/1.5046663

    ADS  Google Scholar 

  17. Hudson, R.L.: When is the Wigner quasi-probability density non-negative? Reports on Mathematical Physics 6, 249–252 (1974)

    MathSciNet  MATH  ADS  Google Scholar 

  18. Soto, F., Claverie, P.: When is the Wigner function of multidimensional systems nonnegative? Journal of Mathematical Physics 24, 97–100 (1983) https://doi.org/10.1063/1.525607

    MathSciNet  ADS  Google Scholar 

  19. Radon, J.: ÜBer die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Wiss. 69, 262–277 (1917)

    MATH  Google Scholar 

  20. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847–2849 (1989) https://doi.org/10.1103/PhysRevA.40.2847

    ADS  Google Scholar 

  21. Bertrand, J., Bertrand, P.: A tomographic approach to Wigner’s function. Found Phys 17, 397–405 (1987) https://doi.org/10.1007/BF00733376

    MathSciNet  ADS  Google Scholar 

  22. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244–1247 (1993) https://doi.org/10.1103/PhysRevLett.70.1244

    ADS  Google Scholar 

  23. Arkhipov, A.S., Lozovik, Yu.E., Man’ko, V.I.: Tomography for Several Particles with One Random Variable. Journal of Russian Laser Research 24, 237–255 (2003) https://doi.org/10.1023/A:1024051809262

    Google Scholar 

  24. Arkhipov, A.S., Man’ko, V.I.: Quantum transitions in the center-of-mass tomographic probability representation. Phys. Rev. A 71, 012101 (2005) https://doi.org/10.1103/PhysRevA.71.012101

    ADS  Google Scholar 

  25. Dudinets, I., Manko, V.: Center of mass tomography and Wigner function for multimode photon states. Int J Theor Phys 57, 1631–1644 (2018) https://doi.org/10.1007/s10773-018-3690-x

    MathSciNet  MATH  Google Scholar 

  26. Wootters, W.K.: A Wigner-function formulation of finite-state quantum mechanics. Ann. of Phys. 176, 1–21 (1987) https://doi.org/10.1016/0003-4916(87)90176-X

    MathSciNet  ADS  Google Scholar 

  27. Bouzouina, A., Bièvre, S. D.: Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Comm. Math. Phys. 178, 83–105 (1996)

    MathSciNet  MATH  ADS  Google Scholar 

  28. Rivas, A.M.F., de Almeida, A.M.O.: The Weyl representation on the torus. Annals of Physics 276, 223–256 (1999) https://doi.org/10.1006/aphy.1999.5942

    MathSciNet  MATH  ADS  Google Scholar 

  29. Leonhardt, U.: Discrete Wigner function and quantum-state tomography. Phys. Rev. A 53, 2998–3013 (1996) https://doi.org/10.1103/PhysRevA.53.2998

    MathSciNet  ADS  Google Scholar 

  30. Ali, S.T., Atakishiyev, N.M., Chumakov, S.M., Wolf, K.B.: The wigner function for general lie groups and the wavelet transform. Ann. Henri Poincare 1, 685–714 (2000)

    MathSciNet  MATH  ADS  Google Scholar 

  31. Gross, D.: Hudson’s theorem for finite-dimensional quantum systems. Journal of Mathematical Physics 47, 122107 (2006) https://doi.org/10.1063/1.2393152

    MathSciNet  MATH  ADS  Google Scholar 

  32. Gottesman, D.: The Heisenberg Representation of Quantum Computers arXiv:quant-ph/9807006 (1998)

  33. Aaronson, S., Gottesman, D.: Improved Simulation of Stabilizer Circuits. Phys. Rev. A 70, 052328 (2004) https://doi.org/10.1103/PhysRevA.70.052328

    ADS  Google Scholar 

  34. Galvão, E.F.: Discrete Wigner functions and quantum computational speedup. Phys. Rev. A 71, 042302 (2005) https://doi.org/10.1103/PhysRevA.71.042302

    ADS  Google Scholar 

  35. Mari, A., Eisert, J.: Positive Wigner Functions Render Classical Simulation of Quantum Computation Efficient. Phys. Rev. Lett. 109, 230503 (2012) https://doi.org/10.1103/PhysRevLett.109.230503

    ADS  Google Scholar 

  36. Kocia, L., Huang, Y., Love, P.: Discrete Wigner Function Derivation of the Aaronson–Gottesman Tableau Algorithm. Entropy 19, 353 (2017) https://doi.org/10.3390/e19070353

    ADS  Google Scholar 

  37. Kiktenko, E.O., Fedorov, A.K., Strakhov, A.A., Man’ko, V.I.: Single qudit realization of the Deutsch algorithm using superconducting many-level quantum circuits. Phys. Lett. A 379, 1409–1413 (2015) https://doi.org/10.1016/j.physleta.2015.03.023

    MATH  ADS  Google Scholar 

  38. Man’ko, V.I., Markovich, L.A.: Entopy-energy inequality for superconducting qutrit. arXiv:1608.01821 [quant-ph] (2016)

  39. Man’ko, M.A.: Entropic and Information Inequalities for Indivisible Qudit Systems*. J Russ Laser Res 37, 533–543 (2016) https://doi.org/10.1007/s10946-016-9605-5

    Google Scholar 

  40. Kiktenko, E.O., Fedorov, A.K., Man’ko, V.I.: Teleportation in an indivisible quantum system. Quantum Measurements and Quantum Metrology 3, 15–19 (2016). https://doi.org/10.1515/qmetro-2016-0003

    Article  Google Scholar 

  41. Khrennikov, A.Y.: Contextual Approach to Quantum Formalism, Fundamental Theories of Physics. Springer Netherlands (2009). https://doi.org/10.1007/978-1-4020-9593-1

  42. Khrennikov, A.: Bell as the Copernicus of Probability. Open Syst. Inf. Dyn. 23, 1650008 (2016) https://doi.org/10.1142/S1230161216500086

    MathSciNet  MATH  Google Scholar 

  43. Khrennikov, A., Alodjants, A.: Classical (Local and Contextual) Probability Model for Bohm–Bell Type Experiments: No-Signaling as Independence of Random Variables. Entropy 21, 157 (2019) https://doi.org/10.3390/e21020157

    MathSciNet  ADS  Google Scholar 

  44. Wootters, W.K.: Picturing Qubits in Phase Space arXiv:quant-ph/0306135 (2003)

  45. Gibbons, K.S., Hoffman, M.J., Wootters, W.K.: Discrete phase space based on finite fields. Phys. Rev. A 70, 062101 (2004) https://doi.org/10.1103/PhysRevA.70.062101

    MathSciNet  MATH  ADS  Google Scholar 

  46. Schwinger, J.: The geometry of quantum states. Proc Natl Acad Sci U S A 46, 257–265 (1960)

    MathSciNet  MATH  ADS  Google Scholar 

  47. Ivonovic, I.D.: Geometrical description of quantal state determination. J. Phys. A: Math. Gen. 14, 3241–3245 (1981) https://doi.org/10.1088/0305-4470/14/12/019

    MathSciNet  ADS  Google Scholar 

  48. Wootters, W.K., Fields, B.D.: Optimal state-determination by mutually unbiased measurements. Annals of Physics 191, 363–381 (1989) https://doi.org/10.1016/0003-4916(89)90322-9

    MathSciNet  ADS  Google Scholar 

  49. Filippov, S.N., Man’ko, V.I.: Mutually unbiased bases: tomography of spin states and the star-product scheme. Phys. Scr. T143, 014010 (2011) https://doi.org/10.1088/0031-8949/2011/T143/014010

    ADS  Google Scholar 

  50. Appleby, D.M., Ericsson, Å., Fuchs, C.A.: Properties of QBist State Spaces. Found Phys 41, 564–579 (2011) https://doi.org/10.1007/s10701-010-9458-7

    MathSciNet  MATH  ADS  Google Scholar 

  51. Fuchs, C.A., Schack, R.: Quantum-Bayesian coherence. Rev. Mod. Phys. 85, 1693–1715 (2013) https://doi.org/10.1103/RevModPhys.85.1693

    ADS  Google Scholar 

  52. Wootters, W.K.: Quantum Measurements and Finite Geometry. Found Phys 36, 112–126 (2006) https://doi.org/10.1007/s10701-005-9008-x

    MathSciNet  MATH  ADS  Google Scholar 

  53. Neumann, J. von: Mathematical Foundations of Quantum mechanics: New Edition Princeton University Press (2018)

  54. Groenewold, H.J.: On the principles of elementary quantum mechanics. Physica 12, 405–460 (1946) https://doi.org/10.1016/S0031-8914(46)80059-4

    MathSciNet  MATH  ADS  Google Scholar 

  55. Moyal, J.E.: Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society 45, 99–124 (1949) https://doi.org/10.1017/S0305004100000487

    MathSciNet  MATH  Google Scholar 

  56. Stratonovich, S.L.: Zh. Eksp. Teor. Fiz. 31, 1012, [1957 Sov. Phys. JETP 4 891] (1956)

  57. Weyl, H.: Quantenmechanik und Gruppentheorie. Z. Physik 46, 1–46 (1927) https://doi.org/10.1007/BF02055756

    MATH  ADS  Google Scholar 

  58. Galetti, D., Marchiolli, M.A.: Discrete coherent states and probability distributions in finite-dimensional spaces. Annals of Physics (New York) 249, 454–480 (1996). https://doi.org/10.1006/aphy.1996.0079

    Article  MathSciNet  MATH  ADS  Google Scholar 

  59. Chaturvedi, S., Ercolessi, E., Marmo, G., Morandi, G., Mukunda, N., Simon, R.: Wigner distributions for finite dimensional quantum systems: an algebraic approach. Pramana 65, 981–993 (2005)

    ADS  Google Scholar 

  60. Marchiolli, M.A., Galetti, D.: Representations of two-qubit and ququart states via discrete Wigner functions. arXiv:1908.02410[math-ph, physics:quant-ph] (2019)

  61. Villegas, C.A., Chavez, A.C., Chumakov, S., Fofanov, Y., Klimov, A.B.: On Discrete Quasiprobability Distributions arXiv preprint quant-ph/0307051 (2003)

  62. Vourdas, A.: Quantum systems with finite Hilbert space. Rep. Prog. Phys. 67, 267 (2004)

    MathSciNet  ADS  Google Scholar 

  63. Ruzzi, M., Marchiolli, M.A., Galetti, D.: Extended Cahill–Glauber formalism for finite-dimensional spaces: I. Fundamentals. Journal of Physics A: Mathematical and General 38, 6239 (2005)

    MathSciNet  MATH  ADS  Google Scholar 

  64. Adam, P., Andreev, V.A., Ghiu, I., Isar, A., Man’ko, M.A., Man’ko, V.I.: Wigner Functions and Spin Tomograms for Qubit States. J Russ Laser Res 35, 3–13 (2014) https://doi.org/10.1007/s10946-014-9395-6

    Google Scholar 

  65. Adam, P., Andreev, V.A., Ghiu, I., Isar, A., Man’ko, M.A., Man’ko, V.I.: Finite Phase Space, Wigner Functions, and Tomography for Two-Qubit States. J Russ Laser Res 35, 427–436 (2014) https://doi.org/10.1007/s10946-014-9444-1

    Google Scholar 

  66. Adam, P., Andreev, V.A., Isar, A., Man’ko, V.I., Man’ko, M.A.: Star product, discrete Wigner functions, and spin-system tomograms. Theor Math Phys 186, 346–364 (2016) https://doi.org/10.1134/S0040577916030041

    MathSciNet  MATH  Google Scholar 

  67. Bianucci, P., Miquel, C., Paz, J.P., Saraceno, M.: Discrete Wigner functions and the phase space representation of quantum computers. Physics Letters A 297, 353–358 (2002) https://doi.org/10.1016/S0375-9601(02)00391-2

    MathSciNet  MATH  ADS  Google Scholar 

  68. Klimov, A.B., Muñoz, C.: Discrete Wigner function dynamics. J. Opt. B: Quantum Semiclass. Opt. 7, S588–S600 (2005) https://doi.org/10.1088/1464-4266/7/12/022

    MathSciNet  ADS  Google Scholar 

  69. Franco, R., Penna, V.: Discrete Wigner distribution for two qubits: a characterization of entanglement properties. J. Phys. A: Math. Gen. 39, 5907–5919 (2006) https://doi.org/10.1088/0305-4470/39/20/018

    MathSciNet  MATH  ADS  Google Scholar 

  70. Gross, D., Eisert, J.: Quantum Margulis expanders. arXiv:0710.0651[math-ph, physics:quant-ph] (2008)

  71. Di Matteo, O., Sanchez-Soto, L.L., Leuchs, G., Grassl, M.: Coarse graining the phase space of N qubits. Phys. Rev. A 95, 022340 (2017) https://doi.org/10.1103/PhysRevA.95.022340

    ADS  Google Scholar 

  72. Carlet, C., Sunar, B. (eds.): Arithmetic of Finite Fields1 First International Workshop, WAIFI 2007, Madrid, Spain June 21-22, Proceedings, Theoretical Computer Science and General Issues, vol. 2007. Springer-Verlag, Berlin Heidelberg (2007)

  73. Björk, G., Klimov, A.B., Sánchez-Soto, L.L.: Chapter 7 The discrete Wigner function. In: Wolf, E. (ed.) Progress in Optics. Elsevier, pp. 469–516 (2008). https://doi.org/10.1016/S0079-6638(07)51007-3

  74. Livine, E.R.: Notes on qubit phase space and discrete symplectic structures. J. Phys. A: Math. Theor. 43, 075303 (2010) https://doi.org/10.1088/1751-8113/43/7/075303

    MathSciNet  MATH  ADS  Google Scholar 

  75. Durt, T., Englert, B.-G., Bengtsson, I., Życzkowski, K.: On mutually unbiased bases. Int. J. Quantum Inform. 08, 535–640 (2010) https://doi.org/10.1142/S0219749910006502

    MATH  Google Scholar 

  76. Asplund, R., Björk, G.: Reconstructing the discrete Wigner function and some properties of the measurement bases. Phys. Rev. A 64, 012106 (2001) https://doi.org/10.1103/PhysRevA.64.012106

    ADS  Google Scholar 

Download references

Acknowledgments

The work of V. I. Man’ko was supported by the Russian Science Foundation grant No.19-71-10091.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avanesov A. S..

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

S., A.A., I., M.V. The Discrete Center-of-Mass Tomogram. Int J Theor Phys 59, 2404–2424 (2020). https://doi.org/10.1007/s10773-020-04511-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04511-3

Keywords

Navigation