Skip to main content
Log in

Thermodynamic Phase Transition of Black Hole

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the thermodynamic evolution of black holes, the generalized uncertainty principle and quantum tunneling effect prevent the complete evaporation of black holes and produce remnants, and thermodynamic phase transition occurs during evaporation. Based on the generalized uncertainty principle and the method of quantum tunneling, we study the phase transition of the quantum–corrected black hole. Using the modified Hamiltonian–Jacobi equation to analyze the corrected thermodynamic quantity, we find that the thermodynamic phase transition of the black hole is not only depending on the nature of the black hole itself, it also depends on quantum parameter ξ, generalized uncertainty parameter β and parameter λ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Zhao, Z.: J. Nat. 28, 210 (2006)

    Google Scholar 

  2. Davies, P.: Proc. R. Soc. Lond. Ser. A 353, 499 (1977)

    Article  ADS  Google Scholar 

  3. Hawking, S., Page, D.N.: Commun. Math. Phys. 87, 577 (1983)

    Article  ADS  Google Scholar 

  4. Fernando, S.: Phy. Rev. D 74, 104032 (2006)

    Article  ADS  Google Scholar 

  5. Mo, J., Liu, W.: Eur. Phys. C 75(5), 211 (2015)

    Article  ADS  Google Scholar 

  6. Jardim, D.F., Rodrigues, M.E., Houndjo, M.J.S.: Eur. Phys. J. Plus 127, 123 (2012)

    Article  Google Scholar 

  7. Kubiznak, D., Mann, R.B.: J. High Energy Phys. 25, 07 (2012)

    Google Scholar 

  8. Robie, H., Robert, M.R.: Entropy 12, 17 (2015)

    Google Scholar 

  9. Kubiznak, D., Simovic, F.: Classical Quant. Grav. 9, 2016 (2016)

    Google Scholar 

  10. Gunasekaran, S., Kubiznak, D., Mann, R.B.: J. High Energy Phys. 43, 11 (2012)

    Google Scholar 

  11. Rajagopal, A., Kubiznak, D., Mann, R.B.: Phys. Lett. B 737, 277 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Altamirano, N., Kubiznak, D., Mann, R.B., Sherkatghanad, Z.: Galaxies 2, 89 (2014)

    Article  ADS  Google Scholar 

  13. Gunasekaran, S., Mann, R.B., Kubiznak, D.: J. High Energy Phys. 11, 10 (2012)

    ADS  Google Scholar 

  14. Kempf, A, Mangano, G., Mann, R.B.: Phys. Rev. D 1108, 52 (1995)

    Google Scholar 

  15. Feng, Z.W., Li, H.L., Zu, X.T.: Eur. Phys. J. C 4, 76 (2015)

    Google Scholar 

  16. Meng, S.M.: Phys. Lett. B 735, 45 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  17. Sadeghi, J., Pourhassan, B., Rostami, M.: Phys. Rev. D 94, 064006 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  18. Mu, B.R., Wang, P., Yang, H.T.: Adv. High Energy Phys. 2015, 898916 (2015)

    Article  Google Scholar 

  19. Adler, R.J., Chen, P., Santiago, D.I.: Gen. Relativ. Gravit. 33, 2101 (2001)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Grant No. 11703018), Natural Science Foundation of Liaoning Province, China (Grant No. 20180550275) and Doctoral Scientific Research Foundation of Shenyang Normal University (Grant No. BS201843).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Ling Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HL., Li, W. Thermodynamic Phase Transition of Black Hole. Int J Theor Phys 59, 3032–3042 (2020). https://doi.org/10.1007/s10773-020-04510-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04510-4

Keywords

Navigation