Skip to main content
Log in

Multi-secret Sharing Model based on Hermite Interpolation Polynomial and Quantum Graph State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the rise of the Internet plus blockchain, quantum secure communication has become a hot topic of interdisciplinary research. Secret sharing is the key technology to realize blockchain. In this paper, the Hermite interpolation polynomial combined with the idea of homomorphic cryptography is used to construct a multi-secret sharing model based on quantum graph theory. This paper relies on the theory of quantum theory to have mature theoretical and experimental foundations in quantum preparation, storage transmission, and measurement feasibility and overcomes the existing program feasibility problems and potential security problems with classical cryptography. This model is outsourced, verifiable, and extensible and has a high information rate. It can effectively resist external interception, replay, entanglement, tampering attacks and internal forgery, impersonation, deception, and collusion attacks. This paper has carried on a detailed analysis of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Karlin, S., Karon, J.M.: On hermite-birkhoff interpolation. J. Approx. Theory 16(3), 538–543 (1966)

    MathSciNet  MATH  Google Scholar 

  2. Ctlin, D.C., Laurentiu, T.F.: On the asymptotic idealness of the asmuth-bloom threshold secret sharing scheme. Inform. Sci. 463-464, 75–85 (2018)

    MathSciNet  Google Scholar 

  3. Bahramian, M., Sheikhi-Garjan, M., Doche, C.: A threshold verifiable multi-secret sharing based on elliptic curves and chinese remainder theorem. IET Inf. Secur. 13(3), 278–284 (2019)

    Google Scholar 

  4. Cafaro, M., Pelle, P.: Space-efficient verifiable secret sharing using polynomial interpolation. IEEE T. Cloud Comput. PP(99), 1–1 (2015)

    Google Scholar 

  5. Cao, W.-F., Yang, Y.-G.: Verifiable quantum secret sharing protocols based on four-qubit entangled states. Int. J. Theor. Phys. 58(4), 1202–1214 (2019)

    MathSciNet  MATH  Google Scholar 

  6. Wang, N., Fu, J., Zeng, J.: Verifiable secret sharing scheme without dealer based on vector space access structures over bilinear groups. Electron. Lett. 54 (2), 77–79 (2018)

    ADS  Google Scholar 

  7. Imai, J., Mimura, M., Tanaka, H.: Verifiable secret sharing scheme using hash values. In: 2018 sixth international symposium on computing and networking workshops (CANDARW) (2018)

  8. Zhang, E., Zhu, J.-Z., Li, G.-L., Chang, J., Li, Y.: Outsourcing hierarchical threshold secret sharing scheme based on reputation. Secur. Commun. Netw. 2019(10), 1–8 (2019)

    Google Scholar 

  9. Boyle, E., Kohl, l., Scholl, P.: Homomorphic Secret Sharing from Lattices Without FHE (2019)

  10. Dawson, E., He, J.: Multisecret-sharing scheme based on one-way function. Electron. Lett. 31(2), 93–95 (2002)

    ADS  Google Scholar 

  11. Xiaoqin, T., Zhiguo, W.: Verifiable multi-secret sharing scheme based on hermite interpolation polynomial. Math. J. 29(3), 367–372 (2009)

    MathSciNet  Google Scholar 

  12. Bennett, C., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of IEE international conference on computers, systems and signal processing. Quantum cryptography: public key distribution and coin tossing, vol. 01, pp 175–179 (1984)

  13. Dehkordi, M., Fattahi, E.: Threshold quantum secret sharing between multiparty and multiparty using greenberger-horne-zeilinger state. Quantum Inf. Process. 12(2), 1299–1306 (2013)

    ADS  MATH  Google Scholar 

  14. Yang, Y.G., Wen, Q.: Threshold quantum secret sharing between multi-party and multi-party. Sci. China 51(9), 1308–1315 (2008)

    MATH  Google Scholar 

  15. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302.1–032302.3 (2002)

    ADS  Google Scholar 

  16. Semenenko, H., Sibson, P., Thompson, M.G., Erven, C.: Interference between independent photonic integrated devices for quantum key distribution. vol. 44, no. 2, pp.275 (2019)

  17. Qin, H, Dai, Y.: An efficient (t,n) threshold quantum secret sharing without entanglement. Mod. Phys. Lett. B 30(12), 1650138 (2016)

    ADS  MathSciNet  Google Scholar 

  18. Deng, F.G., Yan, F.L., Li, X.H., Li, C.Y., Zhou, H.Y., Gao, T.: Addendum to quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A, vol. 72, no. 1, pp. – (2005)

  19. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A (1999)

  20. Du, Y.-T., Bao, W.-S.: Dynamic quantum secret sharing protocol based on two-particle transform of bell states. Chinese Phys. B 27(08), 122–127 (2018)

    Google Scholar 

  21. Ko, W.T., Chiou, S.Y., Lu, E.H., Chang, K.C.: Modifying the ecc-based grouping-proof rfid system to increase inpatient medication safety. J. Med. Syst. 38(9), 1–12 (2014)

    Google Scholar 

  22. Qin, H., Zhu, X., Dai, Y.: (t,n) Threshold quantum secret sharing using the phase shift operation. Quantum Inf. Process. 14(8), 2997–3004 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  23. Wang, Q., Shi, R.-H., Chen, Z.-K., Wang, S.-L.: A quantum sealed auction protocol based on secret sharing. Int. J. Theor. Phys. 4, 1–10 (2019)

    MathSciNet  MATH  Google Scholar 

  24. Wang, X.-B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 94(23), 230503 (2005)

    ADS  Google Scholar 

  25. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 192–193 (2000)

    MathSciNet  Google Scholar 

  26. Bell, B., Herrera-Martí, D., Tame, M., Markham, D., Wadsworth, W., Rarity, J.: Experimental demonstration of a graph state quantum error-correction code. Nat. Commun. 5(4), 3658 (2014)

    ADS  Google Scholar 

  27. Bell, B., Markham, D., Herrera-Martí, D., Marin, A., Wadsworth, W., Rarity, J., Tame, M.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480 (2014)

    ADS  Google Scholar 

  28. Markham, D., Krause, A.: A simple protocol for certifying graph states and applications in quantum networks (2018)

  29. Jian-Wu, L., Xiao-Shu, L., Jin-Jing, S., Ying, G.: Multiparty quantum blind signature scheme based on graph states. Int. J. Theor. Phys. 57(8), 2404–2414 (2018)

    MathSciNet  MATH  Google Scholar 

  30. Jian-Wu, L., Xiao-Shu, L., Chenzi: Quantum secret sharing scheme based on graph state and chinese remainder theorem. J. Commun. 39(10), 76–82 (2018)

    Google Scholar 

  31. Lu, C.Y., Zhou, X.-Q., Güne, O., Gao, W.-B., Zhang, J., Yuan, Z.-S., Goebel, A., Yang, T., Pan, J.-W.: Experimental entanglement of six photons in graph states. Nat. Phys. 3(2), 255 (2007)

    Google Scholar 

  32. Schlingemann, D., Werner, R.F.: Quantum error-correcting codes associated with graphs. Phys. Rev. A quant-ph/0012111, 337–339 (2000)

    ADS  Google Scholar 

  33. Yagisawa, M.: Fully homomorphic encryption without bootstrapping. Acm Transactions on Computation Theory 6(3), 1–36 (2015)

    MathSciNet  Google Scholar 

  34. Jian, X., Wei, L., Yu, Z., Wang, A., Gao, C.Z.: Dynamic fully homomorphic encryption-based merkle tree for lightweight streaming authenticated data structures. J. Netw. Comput. Appl. 107, 113–124 (2018)

    Google Scholar 

  35. Hein, M., Eisert, J., Briegel, H.J.: Multi-party entanglement in graph states. Phys. Rev. A 69(6), 666–670 (2003)

    Google Scholar 

  36. Fortescue, B., Markham, D., Sanders, B.C.: Graph state secret sharing in higher-dimensional systems. In: Proceedings of SPIE - the international society for optical engineering, vol. 7815, pp 78150T–78150T–7 (2010)

  37. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 4229–4231 (2010)

    Google Scholar 

  38. Biham, E., Mor, T.: Security of quantum cryptography against collective attacks. Phys. Rev. Lett. 78(11), 2256–2259 (1997)

    ADS  Google Scholar 

  39. Bartlett, S.D., de Guise, H., Sanders, B.C.: Quantum encodings in spin systems and harmonic oscillators. Phys. Rev. A 65(5), 882–886 (2002)

    Google Scholar 

  40. Glynn, D.: On self-dual quantum codes and graphs. 07 (2019)

  41. Brádler, K., Dusek, M.: Secret-message sharing via direct transmission. J. Opt. B: Quantum Semiclass. Opt. 6(1), 63–68 (2003)

    ADS  MathSciNet  Google Scholar 

  42. Shang, X.J., Wei-Zhang, D.U.: Publicly verifiable multi-secret sharing scheme based on bilinear pairings. Comput. Eng. (2014)

  43. Zhang, E., Peng, J., Li, M.: Outsourcing secret sharing scheme based on homomorphism encryption. IET Inf. Secur. 12(1), 94–99 (2018)

    Google Scholar 

  44. Lin, C., Hu, H., Chang, C.C., Tang, S.: A publicly verifiable multi-secret sharing scheme with outsourcing secret reconstruction. IEEE Access

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quan Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(RAR 854 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Lv, H. Multi-secret Sharing Model based on Hermite Interpolation Polynomial and Quantum Graph State. Int J Theor Phys 59, 2271–2293 (2020). https://doi.org/10.1007/s10773-020-04494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04494-1

Keywords

Navigation