Skip to main content
Log in

Generalized Uncertainty Principle in Astrophysics from Fermi Statistical Physics Arguments

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Heisenberg’s uncertainty principle is one of the most important concepts in quantum mechanics. One of its important outcomes is that enormously high momentum is required to look at extremely small length-scales. Nevertheless, quantum gravity and Grand Unified models taught us that a minimal observable length cutoff which is of the order of the Planck length is required. Such an important feature suggests that the conventional uncertainty principle must be generalized and accordingly the Heisenberg’s uncertainty principle is replaced by a generalized uncertainty relation. Although the effects of the generalized uncertainty relation can only be found in the context of extremely high energies/short distances and not at any scale currently probed in the laboratory, we discuss in this study its impacts on white dwarfs using the quantum mechanical statistical properties of a degenerate Fermi gas in D-spatial dimensions. Both the non-relativistic and extreme relativistic cases were discussed. It was observed that the effect of the generalized uncertainty relation is to shrink the radius of proton, a phenomenon which was observed recently using high precision laser spectroscopy of atomic hydrogen. Several points were discussed and a number of quantum statistical properties were derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rashid, R.: Generalized uncertainty principle and the maximum mass of ideal white dwarfs. Ann. Phys. 374, 434–443 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Maggiore, M.: The algebraic structure of the generalized uncertainty principle. Phys. Lett. B319, 83–86 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  3. Kempf, A., Mangano, G., Mann, R.B.: Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D52, 1108 (1995)

    ADS  MathSciNet  Google Scholar 

  4. Garay, L.J.: Quantum gravity and minimum length. Int. J. Mod. Phys. A10, 145–166 (1995)

    Article  ADS  Google Scholar 

  5. Capozziello, S., Lambiase, G., Scarpetta, G.: Generalized uncertainty principle from quantum geometry. Int. J. Theor. Phys. 39, 15–22 (2000)

    Article  MathSciNet  Google Scholar 

  6. Das, E., Vagenas, C.: Phenomenological implications of the generalized uncertainty principle. Can. J. Phys. 87, 233–240 (2009)

    Article  ADS  Google Scholar 

  7. Ali, A., Das, E., Vagenas, C.: Proposal for testing quantum gravity in the lab. Phys. Rev. D84, 044013 (2001)

    ADS  Google Scholar 

  8. Ong, Y.C., Yao, Y.: Generalized uncertainty principle and white dwarfs redux: how cosmological constant protects Chandrasekhar limit. Phys. Rev. D98, 126018 (2018)

    ADS  Google Scholar 

  9. Ong, Y.C.: Generalized uncertainty principle, black holes, and white dwarfs: a tale of two infinities. J. Cosmol. Astropart. Phys. 09, 015 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  10. Al-Jaber, S.M.: Degenerate Electron Gas and Star Stabilization in D Dimensions. Nuovo. Cimento. 123, 17 (2008)

    Google Scholar 

  11. Chavanis, P.H.: White dwarf stars in D dimensions. Phys. Rev. D76, 023004 (2007)

    ADS  Google Scholar 

  12. Koester, D., Chanmugan, G.: Physics of white dwarf stars. Rep. Prog. Phys. 53, 837–915 (1990)

    Article  ADS  Google Scholar 

  13. Miller, G.A., Thomas, A.W., Carroll, J.D., Rafelski, J.: Natural resolution of the proton size puzzle. Phys. Rev. A84, 020101 (2011)

    Article  ADS  Google Scholar 

  14. El-Nabulsi, R.A.: Fourth-order Ginzburg-Landau differential equation a la fisher-Kolmogorov and quantum aspects of superconductivity. Phys. C: Supercond. Appl. 567, 1353545 (2019)

    Article  ADS  Google Scholar 

  15. El-Nabulsi, R.A.: On a new fractional uncertainty relation and its implications in quantum mechanics and molecular physics. Proc. R. Soc. A476, 20190729 (2020)

    Article  Google Scholar 

  16. El-Nabulsi, R.A.: Some implications of three generalized uncertainty principles in statistical mechanics of an ideal gas. Eur. Phys. J. P135, 34 (2020)

    Google Scholar 

  17. El-Nabulsi, R.A.: Nonlocal uncertainty and its implications in quantum mechanics at ultramicroscopic scales. Quant. Stud.: Math. Found. 6, 123–133 (2019)

    MathSciNet  MATH  Google Scholar 

  18. R. Pohlet al., The size of the proton, Nature 466, 213–216 (2010)

  19. Beyer, A., Maisenbacher, L., Matveev, A., Pohl, R., Khabarova, K., Grinin, A., Lamour, T., Yost, D.C., Hänsch, T.W., Kolachevsky, N., Udem, T.: The Rydberg constant and proton size from atomic hydrogen. Science. 358, 79–85 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  20. Barger, V., Chiang, C.-W., Keung, W.-Y., Marfatia, D.: Proton size anomaly Phys. Rev. Let. 106, 153001 (2011)

    Article  ADS  Google Scholar 

  21. Batell, B., Mckeen, D., Pospelov, M.: New parity-violating muonic forces. Phys. Rev. Lett. 107, 011803 (2011)

    Article  ADS  Google Scholar 

  22. Carslon, C.E., Rislow, B.C.: New physics and the proton radius problem. Phys. Rev. D86, 035013 (2012)

    ADS  Google Scholar 

  23. Friedmann, T.: The shrinking radius of nucleons. Eur. Phys. J. C73, 2299 (2013)

    Article  ADS  Google Scholar 

  24. Mart, T., Sulaksono, A.: Nonidentical protons. Phys. Rev. C87, 025807 (2013)

    ADS  Google Scholar 

  25. Wang, L.B., Ni, W.T.: Proton radius puzzle and large extra dimensions. Mod. Phys. Lett. A28, 1350094 (2013)

    Article  ADS  Google Scholar 

  26. Antognini, A., Nez, F., Schuhmann, K., Amaro, F.D., Biraben, F., Cardoso, J.M.R., Covita, D.S., Dax, A., Dhawan, S., Diepold, M., Fernandes, L.M.P., Giesen, A., Gouvea, A.L., Graf, T., Hansch, T.W., Indelicato, P., Julien, L., Kao, C.Y., Knowles, P., Kottmann, F., le Bigot, E.O., Liu, Y.W., Lopes, J.A.M., Ludhova, L., Monteiro, C.M.B., Mulhauser, F., Nebel, T., Rabinowitz, P., dos Santos, J.M.F., Schaller, L.A., Schwob, C., Taqqu, D., Veloso, J.F.C.A., Vogelsang, J., Pohl, R.: Proton structure from the measurement of 2S-2P transition frequencies of muonic hydrogen. Science. 339, 417–420 (2013)

    Article  ADS  Google Scholar 

  27. Fleurbaey, H., Galtier, S., Thomas, S., Bonnaud, M., Julien, L., Biraben, F., Nez, F., Abgrall, M., Guéna, J.: New measurement of the 1S−3S transition frequency of hydrogen: contribution to the proton charge radius puzzle. Phys. Rev. Lett. 120, 183001 (2018)

    Article  ADS  Google Scholar 

  28. N. Bezginov, et al., Contribution to resolution of the proton radius puzzle via measurement of the n = 2 Lamb shift in atomic hydrogen. The 26th International Conference on Atomic Physics, Barcelona, July 26, 2018

  29. K. Isern, E. Garcia-Berro, J. Guerrero, J. A. Lobo, J. M. Ibanez, Gravitational waves from the merging of white dwarfs. In: D. de Martino, R. Silvotti, J. E. Solheim, R. Kalytis (eds) white dwarfs. NATO science series (series II: mathematics, physics and chemistry), Vol. 105. Springer, Dordrecht

  30. Feng, Z.-W., Yang, S.-Z., Li, H.-L., Zu, X.-T.: Constraining the generalized uncertainty principle with the gravitational wave event GW150914. Phys. Lett. B768, 81–85 (2017)

    Article  ADS  Google Scholar 

  31. S.-H. Dong, Wave Equations in Higher Dimensions, Springer Netherlands, 2011 XXV, 295p. DOI https://doi.org/10.1007/978-94-007-1917-0 (https://www.springer.com/gp/book/9789400719163)

  32. Mathew, A., Nandy, M.K.: Noncommutative dispersion relation and mass-radius relation of white dwarfs. Res. Astron. Astrophys. 18, 151 (2018)

    Article  ADS  Google Scholar 

  33. Bertolami, O., Zarro, C.A.D.: Toward a noncommutative astrophysics. Phys. Rev. D81, 025005 (2010)

    ADS  Google Scholar 

  34. El-Nabulsi, R.A.: The fractional white dwarf hydrodynamical nonlinear differential equation and emergence of quark stars. Appl. Math. Comput. 218, 2837–2849 (2011)

    MathSciNet  MATH  Google Scholar 

  35. El-Nabulsi, R.A.: Modifications at large distances from fractional and fractal arguments. FRACTALS. 18, 185–190 (2010)

    Article  MathSciNet  Google Scholar 

  36. El-Nabulsi, R.A.: Modified Proca equation and modified dispersion relation from a power-law Lagrangian functional. Ind. J. Phys. 87, 465–470 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank the group of anonymous referees for their useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

PACS Classification Numbers: 03.65.-w; 03.75.Ss; 05.30.-d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. Generalized Uncertainty Principle in Astrophysics from Fermi Statistical Physics Arguments. Int J Theor Phys 59, 2083–2090 (2020). https://doi.org/10.1007/s10773-020-04480-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04480-7

Keywords

Navigation