Skip to main content
Log in

Authenticated Controlled Quantum Secure Direct Communication Protocol Based on Five-Particle Brown States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper a new authenticated quantum protocol aiming to establish a controlled secure direct communication based on five-particle Brown states is proposed. In comparison with previous ones, higher amount of quantum channel capacity is spent for transferring secret information. The controller takes the responsibility of communication after authenticating its identity to parties of communication and keeps its supervision task till end phase of transferring information. The bidirectional authentication method along with eavesdropping check, uses the pre-transmitted identification and hash. The classical XOR operator is used for preventing from eavesdropping by dishonest ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: Public key distribution and coin tossing. IEEE Int. Comp. Conf. Newyork. 175, 8 (1984)

    MATH  Google Scholar 

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  3. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bell’s theorem. Phys. Rev. Lett. 68, 557–559 (1992)

    ADS  MathSciNet  MATH  Google Scholar 

  4. Zhan, Y.B.: Teleportation of N-particle entangled W state via entanglement swapping. Chin. Phys, B. 13, 1801–1805 (2004)

    Article  Google Scholar 

  5. Deng, F.G., Li, C.Y., Li, Y.S., et al.: Symmetric multipartycontrolled teleportation of an arbitrary two-particle entanglemen. Phys. Rev. A. 72, 022338 (2004)

    Article  ADS  Google Scholar 

  6. Shamir, A.: How to share a secret. Commun. ACM. 22, 612–613 (1979)

    Article  MathSciNet  Google Scholar 

  7. Chen, P., Deng, F.G., Long, G.L.: High-dimension multiparty quantum secret sharing scheme with Einstein–Podolsky–Rosen pairs. Chin. Phys. B. 15, 2228–2235 (2006)

    Article  Google Scholar 

  8. Beige, A., Engler, K., Weinfurter, H.: Secure communication with a publicly known key. Acta Phys. Pol. A. 101, 357 (2002)

    Article  ADS  Google Scholar 

  9. Deng, F., et al.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A. 68, 4 (2003)

    Google Scholar 

  10. Deng, F., Long, G.: Secure direct communication with a quantum one-time pad. Phys. Rev. A. 69, 5 (2004)

    Article  Google Scholar 

  11. Wang, J., et al.: Quantum secure direct communication based on order rearrangement of single photons. Phys. Rev. A. 358(4), 256–258 (2006)

    MATH  Google Scholar 

  12. Wang, J., et al.: Quantum secure direct communication without using perfect quantum channel. Int.l J. Modern Phys. C. 17(05), 685–692 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  13. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle GHZ state. Opt. Commun. 253, 15 (2005)

    Article  ADS  Google Scholar 

  14. Li, X.H., Li, C.Y., Deng, F.G., et al.: Quantum secure direct communication with quantum encryption based on pure entangled states. Chin. Phys. B. 16, 2149–2153 (2007)

    Article  Google Scholar 

  15. Brown, I.D., Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. Phys. A: Math. Gen. 38, 1119 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yan, X., Chang, F.U., Zhang, S.: Quantum Dialogue by Using the GHZ State. Phys. Soc. Korean. 48(1), 2427 (2006)

    Google Scholar 

  17. Xiao-Ming, X., et al.: Quantum Secure Direct Communication with Four-Particle Genuine Entangled State and Dense Coding. Commun. Theor. Phys. 52(1), 60–62 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ye, T., Jiang, L.: Improvement of Controlled Bidirectional Quantum Direct Communication Using a GHZ State. Chin. Phys. Lett. 30(4), 040305 (2013)

    Article  ADS  Google Scholar 

  19. Shan, C.J., Liu, J.B., Chen, T., et al.: Controlled Quantum Secure Direct Communication with Local Separate Measurements in Cavity QED. Int. J. Theor. Phys. 49, 334 (2010)

    Article  Google Scholar 

  20. Lee, H., et al.: Quantum direct communication with authentication. Phys. Rev. A. 73, 4 (2006)

    Google Scholar 

  21. Zhang, Z., et al.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A. 75, 2 (2007)

    Google Scholar 

  22. Liu, D., Pei, C.X., Quan, D.X., et al.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27, 050306 (2010)

    Article  ADS  Google Scholar 

  23. Lin, S., Huang, C., Liu, X.F.: Multi-user quantum key distribution based on bell states with mutual authentication. Phys. Scr. 87, 035008 (2013)

    Article  ADS  Google Scholar 

  24. Long, G., Liu, X.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A. 65, 3 (2002)

    Article  Google Scholar 

  25. Wang, J., Zhang, Q., Tang, C.J.: Multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilingerstate. Opt.Commun. 266, 732 (2006)

    Article  ADS  Google Scholar 

  26. Wang, J., Chen, H.Q., Zhang, Q., et al.: Multiparty controlled quantum secure direct communication protocol. Acta Phys. Sin. 56, 673 (2007)

    MathSciNet  Google Scholar 

  27. Wang, T.Y., Qin, S.J., Wen, Q.Y., et al.: Analysis and improvement of multiparty controlled quantum secure direct communication protocol. Acta.Phys.Sin. 57, 7452–7456 (2008)

    Google Scholar 

  28. Gao, F., Qin, S.J., Wen, Q.Y., et al.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283, 192–195 (2010)

    Article  ADS  Google Scholar 

  29. Liu, D., Pei, C.X., Quan, D.X., et al.: A new quantum secure direct communication scheme with authentication. Chin. Phys. Lett. 27, 050306 (2010)

    Article  ADS  Google Scholar 

  30. Zhang, Z.J., Liu, J., Wang, D., Shi, S.H.: Comment on “Quantum direct communication with authentication”. Phys. Rev. A. 75, (2007)

  31. Yang, J., et al.: Quantum Secure Direct Communication with Authentication Expansion Using Single Photons. Commun. Theor. Phys. 54(5), 829–834 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  32. T. Chang, Ch. Xu, Sh. Zhang, and L. Yan, “Controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quatum one time pad,” China. Press, Kuala Lumpur. 10, pp.1007, 2014

  33. Wang, M., et al.: A new controlled quantum secure direct communication protocol based on a four-qubit cluster state. Mod. Phys. Lett. B. 28(24), 1450194 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  34. Patwardhan, S., et al.: Efficient Controlled Quantum Secure Direct Communication Protocols. J. Theor. Phys. 55(7), 3280–3288 (2016)

    Article  MathSciNet  Google Scholar 

  35. Zheng, X., Long, Y.: Controlled quantum secure direct communication with authentication protocol based on five-particle cluster state and classical XOR operation. Quantum Inf. Process. 18, 5 (2019)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monireh Houshmand.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khorasani, F.M., Houshmand, M. & Anzabi-Nezhad, N.S. Authenticated Controlled Quantum Secure Direct Communication Protocol Based on Five-Particle Brown States. Int J Theor Phys 59, 1612–1622 (2020). https://doi.org/10.1007/s10773-020-04429-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04429-w

Keywords

Navigation