Skip to main content
Log in

Bidirectional Quantum Teleportation with GHZ States and EPR Pairs via Entanglement Swapping

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A novel bidirectional quantum teleportation schema with GHZ states and EPR pairs via entanglement swapping is proposed. Two GHZ states and two pure EPR pairs build the quantum physical system. Within this quantum system, two entangled GHZ states serve for the quantum channel, and via the entanglement swapping the new entanglements are generated from the involved qbuits after the measurements are performed on both sides. CNOT operation, single qubit measurement and the appropriate unitary transformation are executed on each side, the pure EPR states are simultaneously teleported to each other. The presented protocol bears the economical and efficient advantage compared with the conventional protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Friis, N., Marty, O., Maier, C., Hempel, C., et al.: Observation of entangled states of a fully controlled 20-Qubit system. Phys. Rev. X 8, 0212012 (2018)

    Google Scholar 

  2. Wang, X.L., Luo, Y.H., Huang, H.L., Chen, M.C., et al.: 18-qubit entanglement with six photons three degrees of freedom. Phys. Rev. Lett. 120(260502), 1–8 (2018)

    Google Scholar 

  3. Yan, X.Y., Gong, Li-H., Chen, H.Y., Zhou, N.R.: New quantum key distribution scheme based on random hybrid quantum channel with EPR pairs and GHZ states. Int. J. Theor. Phys. 57(1), 1–9 (2018)

    Article  MATH  Google Scholar 

  4. Hou, K.: Joint remote preparation of four-qubit cluster-type states with multiparty. Quantum Information Processing 12(12), 3821–3833 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Su, X., Tian, C., Deng, X., Li, Q., et al.: Quantum entanglement swapping between two multipartite entangled states. Phys. Rev. Lett. 117(240503), 1–5 (2016)

    Google Scholar 

  6. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum private queries: security analysis. IEEE Trans. Inform. Theory 56(7), 3465–3477 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67(6), 661 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fu, H.Z., Tian, X.-L., Hu, Y.: A general method of selecting quantum channel for bidirectional quantum teleportation. Int. J. Theoretical Phys. 53(6), 1840–1847 (2014)

    Article  ADS  MATH  Google Scholar 

  9. Liu, Z.H., Chen, H.W., Liu, W.J.: Cryptanalysis of controlled quantum secure direct communication and authentication protocol based on five-particle cluster state and quantum one-time pad. Int. J. Theoretical Phys. 55(10), 4564–4576 (2016)

    Article  ADS  MATH  Google Scholar 

  10. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. Quantum Information Processing 14(2), 739–753 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhan, Y., Fu, H., Li, W., Ma, P.: Deterministic remote preparation of a four-qubit cluster-type entangled state. Int. J. Theoretical Phys. 52(8), 2615–2622 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Du, Z., Li, X.: Robust high capability QKD-based database private query. Int. J. Theoretical Phys. 58(2), 3911–398 (2019)

    Article  MATH  Google Scholar 

  13. Du, Z., Li, X.: A layered quantum communication path protocol cross multiple participants based on entanglement swapping. Quantum Information Processing 18(7), 226 (2019)

    Article  ADS  Google Scholar 

  14. Zadeh, M.S.S., Houshmand, M.: Bidirectional quantum teleportation of a class of n-qubit states by using (2n + 2)-qubit entangled states as quantum channel. Int. J. Theoretical Phys. 57(1), 175–183 (2018)

    Article  ADS  MATH  Google Scholar 

  15. Zha, X.W., Zou, Z.C., Qi, J.X., Song, H.Y.: Bidirectional quantum controlled teleportation via five-qubit cluster state. Int. J. Theoretical Phys. 52(6), 1740–1744 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theoretical Phys. 52(11), 3870–3873 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Sang, M.-H., Li, C.: Bidirectional controlled quantum communication by using a seven-qubit entangled state. Int. J. Theoretical Phys. 57(7), 2064–2067 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Li, X., Shang, J., Ng, H.K., Englert, B.-G.: Optimal error intervals for properties of the quantum state. Phys. Rev. A 9(062112), 1–21 (2016)

    Google Scholar 

  19. Chen, Y.: Bidirectional controlled quantum teleportation by using five-qubit entangled state. Int. J. Theoretical Phys. 53(6), 1454–1458 (2014)

    Article  ADS  MATH  Google Scholar 

  20. Duan, Y.J., Zha, X.W., Sun, X.M., Xia, J.F.: Bidirectional quantum controlled teleportation via a maximally seven-qubit entangled state. Int. J. Theoretical Phys. 53(8), 2697–2707 (2014)

    Article  ADS  MATH  Google Scholar 

  21. Sang, M.-H., Nie, L.P.: Asymmetric bidirectional controlled quantum information transmission via seven-particle entangled state. Int. J. Theoretical Phys. 56(11), 3638–3641 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Sang, Z.W.: Bidirectional controlled quantum information transmission by using a five-qubit cluster state. Int. J. Theoretical Phys. 56(11), 3400–3404 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Hassanpour, S., Houshmand, M.: Bidirectional teleportation of a pure EPR state by using GHZ states. Quantum Information Process 15(2), 905–912 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Wang, L., Zhao, S.M.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Information Processing 16 (4), 100 (2017)

    Article  ADS  MATH  Google Scholar 

  25. Liu, W., Li, C., Zheng, Y., Xu, Y., Xu, Y.: Quantum privacy-preserving price e-negotiation. Int. J. Theoretical Phys. 58(10), 3259–3270 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant No. 61672279).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenlong Du.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 \(|\varphi _{0}\rangle \rightarrow |\varphi _{1}\rangle \) transition

The quantum system state transits from \(\varphi _{0}\rightarrow \varphi _{1}\) via CNOT unitary matrix \(\textit {U}^{p_{1}}_{CN}\) and \(\textit {U}^{q_{1}}_{CN}\). The transition \(\textit {U}^{p_{1}}_{CN}\textit {U}^{q_{1}}_{CN}|\varphi _{0}\rangle \rightarrow |\varphi _{1}\rangle \) is represented as follows.

$$ \begin{array}{ll} &\textit{U}^{p_{1}}_{CN}\textit{U}^{q_{1}}_{CN}{|\varphi_{0}\rangle}_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}p_{1}p_{2}q_{1}q_{2}} = \\ &\textit{U}^{p_{1}}_{CN}\textit{U}^{q_{1}}_{CN} \\ &\frac{1}{2}\{\left( |000000\rangle+|000111\rangle+|111000\rangle+|111111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\alpha_{0}\alpha_{1}|0000\rangle_{p_{1}p_{2}q_{1}q_{2}} \\ & +\left( |000000\rangle+|000111\rangle+|111000\rangle+|111111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\alpha_{0}\beta_{1}|0011\rangle_{p_{1}p_{2}q_{1}q_{2}}\\ & +\left( |000000\rangle+|000111\rangle+|111000\rangle+|111111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\beta_{0}\alpha_{1}|1100\rangle_{p_{1}p_{2}q_{1}q_{2}} \\ & +\left( |000000\rangle+|000111\rangle+|111000\rangle+|111111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\beta_{0}\beta_{1}|1111\rangle_{p_{1}p_{2}q_{1}q_{2}}\}\\ &=\\ &{|\varphi_{1}\rangle}_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}p_{1}p_{2}q_{1}q_{2}} = \\ &\frac{1}{2}\{\left( |000000\rangle+|000111\rangle+|111000\rangle+|111111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\alpha_{0}\alpha_{1}|0000\rangle_{p_{1}p_{2}q_{1}q_{2}}\\ & +\left( |000001\rangle+|000110\rangle+|111001\rangle+|111110\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\alpha_{0}\beta_{1}|0011\rangle_{p_{1}p_{2}q_{1}q_{2}} \\ &+\left( |100000\rangle+|100111\rangle+|011000\rangle+|011111\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\beta_{0}\alpha_{1}|1100\rangle_{p_{1}p_{2}q_{1}q_{2}}\\ &+\left( |100001\rangle+|100110\rangle+|011001\rangle+|011110\rangle\right)_{A_{1}B_{1}B_{2}A_{2}A_{3}B_{3}}\beta_{0}\beta_{1}|1111\rangle_{p_{1}p_{2}q_{1}q_{2}}\}\\ &=\frac{1}{2}(\varPsi_{0}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{0}\rangle_{B_{1}B_{2}B_{3}}+ |\varPsi_{1}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{1}\rangle_{B_{1}B_{2}B_{3}}+|\varPsi_{2}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{2}\rangle_{B_{1}B_{2}B_{3}}\\ &\quad +|\varPsi_{3}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{3}\rangle_{B_{1}B_{2}B_{3}})\alpha_{0}\alpha_{1}|0000\rangle_{p_{1}p_{2}q_{1}q_{2}} \\ &+\frac{1}{2}(|\varPsi_{0}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{6}\rangle_{B_{1}B_{2}B_{3}}-|\varPsi_{0}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{7}\rangle_{B_{1}B_{2}B_{3}}+|\varPsi_{2}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{0}\rangle_{B_{1}B_{2}B_{3}}\\ &\quad -|\varPsi_{2}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{1}\rangle_{B_{1}B_{2}B_{3}})\alpha_{0}\beta_{1}|0011\rangle_{p_{1}p_{2}q_{1}q_{2}}\\ &+\frac{1}{2}(|\varPsi_{2}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{0}\rangle_{B_{1}B_{2}B_{3}}+|\varPsi_{3}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{1}\rangle_{B_{1}B_{2}B_{3}} +|\varPsi_{0}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{6}\rangle_{B_{1}B_{2}B_{3}}\\ &\quad +|\varPsi_{1}\rangle_{A_{1}A_{2}A_{3}}|\varPsi_{7}\rangle_{B_{1}B_{2}B_{3}} )\beta_{0}\alpha_{1}|1100\rangle_{p_{1}p_{2}q_{1}q_{2}} \end{array} $$

1.2 The Measurement Results and Corresponding System Collapsed States

The measurement results on Alice’ and Bob’s end are separately given in the first column and second one. The collapsed states of qubits B1, B2, A2, A3, p2 and q2 are listed in the third column.

Table 3 The measurement results and the corresponding collapsed states

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, Z., Li, X. & Liu, X. Bidirectional Quantum Teleportation with GHZ States and EPR Pairs via Entanglement Swapping. Int J Theor Phys 59, 622–631 (2020). https://doi.org/10.1007/s10773-019-04355-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04355-6

Keywords

Navigation