Skip to main content
Log in

Some Theoretically Organized Algorithm for Quantum Computers

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We first propose herein a novel parallel computation, even though today’s algorithm methodology for quantum computing, for all of the combinations of values in variables of a logical function. Our concern so far has been to obtain an attribute of some function. In fact such a task is only for one task problem solving. However, we could treat positively the plural evaluations of some logic function in parallel instead of testing the function for finding out its attribute. In fact, these evaluations of the function are naturally included and evaluated, in parallel, in normal quantum computing discussing a function in a Boolean algebra stemmed from atoms in it. As is naturally understandable with mathematics, quantum computing naturally meets the category of a Boolean algebra. The reason why we positively introduce a Boolean algebra here is because we have multiple evaluations of a function in quantum computing general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rennie, R. (ed.): Oxford Dictionary of Physics, 7th edn. Oxford University Press, London (2015)

  2. Deutsch, D.: . Proc. Roy. Soc. London Ser. A 400, 97 (1985)

    ADS  MathSciNet  Google Scholar 

  3. Deutsch, D., Jozsa, R.: . Proc. Roy. Soc. London Ser. A 439, 553 (1992)

    ADS  MathSciNet  Google Scholar 

  4. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: . Proc. Roy. Soc. London Ser. A 454, 339 (1998)

    Article  ADS  Google Scholar 

  5. Jones, J.A., Mosca, M.: . J. Chem. Phys. 109, 1648 (1998)

    Article  ADS  Google Scholar 

  6. Gulde, S., Riebe, M., Lancaster, G.P.T., Becher, C., Eschner, J., Häffner, H., Schmidt-Kaler, F., Chuang, I.L., Blatt, R.: . Nature (London) 421, 48 (2003)

    Article  ADS  Google Scholar 

  7. de Oliveira, A.N., Walborn, S.P., Monken, C.H.: . J. Opt. B: Quantum Semiclass. Opt. 7, 288–292 (2005)

    Article  ADS  Google Scholar 

  8. Kim, Y.-H.: . Phys. Rev. A 67(R), 040301 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  9. Mohseni, M., Lundeen, J.S., Resch, K.J., Steinberg, A.M.: . Phys. Rev. Lett. 91, 187903 (2003)

    Article  ADS  Google Scholar 

  10. Tame, M.S., Prevedel, R., Paternostro, M., Böhi, P., Kim, M.S., Zeilinger, A.: . Phys. Rev. Lett. 98, 140501 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bernstein, E., Vazirani, U.: .. In: Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of Computing (STOC ’93), pp 11–20 (1993)

  12. Bernstein, E., Vazirani, U.: . SIAM J. Comput. 26-5, 1411–1473 (1997)

    Article  Google Scholar 

  13. Simon, D.R.: .. In: 35th annual symposium on foundations of computer science, Proceedings. retrieved 2011-06-06, pp 116–123 (1994)

  14. Shor, P.W.: .. In: Proceedings of the 35th IEEE symposium on foundations of computer science. 124 (1994)

  15. Grover, L.K.: .. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, p 212 (1996)

  16. Du, J., Shi, M., Zhou, X., Fan, Y., Ye, B.J., Han, R., Wu, J.: . Phys. Rev. A 64, 042306 (2001)

    Article  ADS  Google Scholar 

  17. Brainis, E., Lamoureux, L.-P., Cerf, N.J., Emplit, P.H., Haelterman, M., Massar, S.: . Phys. Rev. Lett. 90, 157902 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  18. Cross, A.W., Smith, G., Smolin, J.A.: . Phys. Rev. A 92, 012327 (2015)

    Article  ADS  Google Scholar 

  19. Li, H., Yang, L.: . Quantum Inf. Process. 14, 1787 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  20. Adcock, M.R.A., Hoyer, P., Sanders, B.C.: . Quantum Inf. Process. 15, 1361 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  21. Fallek, S.D., Herold, C.D., McMahon, B.J., Maller, K.M., Brown, K.R., Amini, J.M.: . New J. Phys. 18, 083030 (2016)

    Article  ADS  Google Scholar 

  22. Diep, D.N., Giang, D.H., Van Minh, N.: . Int. J. Theor. Phys. 56, 1948 (2017)

    Article  Google Scholar 

  23. Jin, W.: . Quantum Inf. Process. 15, 65 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  24. Diep, D.N., Giang, D.H.: . Int. J. Theor. Phys. 56, 2797 (2017)

    Article  Google Scholar 

  25. Diep, D.N., Giang, D.H., Phu, P.H.: . Int. J. Theor. Phys. 57, 841 (2018)

    Article  Google Scholar 

  26. Resconi, G., Nagata, K.: . Int. J. Gen. Eng. Technol. 7(1), 1–20 (2018)

    Google Scholar 

  27. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  28. Gilbert, W.J., Nicholson, W.K.: Modern Algebra with Applications, 2nd edn. Wiley, New York (2004)

    MATH  Google Scholar 

Download references

Acknowledgments

We thank Professor Do Ngoc Diep, Professor Shahrokh Heidari, Professor Germano Resconi, Professor Jaewook Ahn, and Professor Han Geurdes for valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Nagata.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagata, K., Nakamura, T. Some Theoretically Organized Algorithm for Quantum Computers. Int J Theor Phys 59, 611–621 (2020). https://doi.org/10.1007/s10773-019-04354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04354-7

Keywords

Navigation