Skip to main content
Log in

Conditions for Quantum and Classical Tomogram-Like Functions to Describe System States and to Retain Normalizations During Time Evolution

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

It is shown that dynamical equations for quantum tomograms retain the normalizations of their solutions during time evolution only if the solutions satisfy a set of special conditions. These conditions are found explicitly. On the contrary, it is also illustrated that the classical Liouville equation, Moyal equation for Wigner function, and evolution equation for Husimi function retain normalizations of any initially normalized and quickly decaying at infinity functions on the phase space. Necessary and sufficient conditions for optical and symplectic tomogram-like functions to be tomograms of physical states are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mancini, S., Man’ko, V.I., Tombesi, P.: Symplectic tomography as classical approach to quantum systems. Phys. Lett. A 213, 1 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: An introduction to the tomographic picture of quantum mechanics. Phys. Scr. 79, 065013 (2009)

    ADS  MATH  Google Scholar 

  3. Landau, L.D.: The damping problem in wave mechanics. Z. Phys. 45, 430 (1927)

    ADS  MATH  Google Scholar 

  4. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749 (1932)

    ADS  MATH  Google Scholar 

  5. Husimi, K.: Some formal properties of the density matrix. Proc. Phys.-Math. Soc. Japan 22, 264 (1940)

    MATH  Google Scholar 

  6. Glauber, R.J.: Photon correlations. Phys. Rev. Lett. 10, 84 (1963)

    ADS  MathSciNet  Google Scholar 

  7. Sudarshan, E.C.G.: Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 10, 277 (1963)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Bertrand, J., Bertrand, P.: A tomographic approach to Wigner’s function. Found. Phys. 17, 397 (1987)

    ADS  MathSciNet  Google Scholar 

  9. Vogel, K., Risken, H.: Determination of quasiprobability distributions in terms of probability distributions for the rotated quadrature phase. Phys. Rev. A 40, 2847(R) (1989)

    ADS  Google Scholar 

  10. Mancini, S., Man’ko, V.I., Tombesi, P.: Wigner function and probability distribution for shifted and squeezed quadratures. J. Opt. B: Quantum Semiclass. Opt. 7, 615 (1995)

    ADS  Google Scholar 

  11. Narcowich, F.J., O’Connell, R.F.: Necessary and sufficient conditions for a phase-space function to be a Wigner distribution. Phys. Rev. A 34, 1 (1986)

    ADS  MathSciNet  Google Scholar 

  12. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: On the tomographic picture of quantum mechanics. Phys. Lett. A 374, 2614 (2010)

    ADS  MathSciNet  MATH  Google Scholar 

  13. Mancini, S., Man’ko, V.I., Tombesi, P.: Classical-like description of quantum dynamics by means of symplectic tomography. Found. Phys. 27, 801 (1997)

    ADS  MathSciNet  Google Scholar 

  14. Korennoy, Ya.A., Man’ko, V.I.: Probability representation of the quantum evolution and energy-level equations for optical tomograms. J. Russ. Laser Res. 32, 74 (2011)

    Google Scholar 

  15. Korennoy, Ya.A., Man’ko, V.I.: Evolution equation of the optical tomogram for arbitrary quantum Hamiltonian and optical tomography of relativistic classical and quantum systems. J. Russ. Laser Res. 32, 338 (2011)

    Google Scholar 

  16. Mancini, S., Man’ko, O.V., Man’ko, V.I., Tombesi, P.: The Pauli equation for probability distributions. J. Phys. A: Math. Gen. 34, 3461 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  17. Korennoy, Ya.A., Man’ko, V.I.: Pauli equation for a joint tomographic probability distribution. J. Russ. Laser Res. 36, 534 (2015)

    Google Scholar 

  18. Korennoy, Ya.A., Man’ko, V.I.: Evolution equation for a joint tomographic probability distribution of spin-1 particles. Int. J. Theor. Phys. 55, 4885 (2016)

    MATH  Google Scholar 

  19. Korennoy, Ya.A., Man’ko, V.I.: Observables, evolution equation, and stationary states equation in the joint probability representation of quantum mechanics. Int. J. Theor. Phys. 56, 1183 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Korennoy, Ya.A., Man’ko, V.I.: Gauge transformation of quantum states in probability representation. J. Phys. A: Math. Theor. 50, 155302 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Korennoy, Y. a. A.: Gauge-independent Husimi functions of charged quantum particles in the electro-magnetic field. arXiv:1806.06443 [quant-ph] (2018)

  22. Smithey, D.T., Beck, M., Raymer, M.G., Faridani, A.: Measurement of the Wigner distribution and the density matrix of a light mode using optical homodyne tomography: Application to squeezed states and the vacuum. Phys. Rev. Lett. 70, 1244 (1993)

    ADS  Google Scholar 

  23. Lvovsky, A.I., Raymer, M.G.: Continuous-variable optical quantum-state tomography. Rev. Mod. Phys. 81, 299 (2009)

    ADS  Google Scholar 

  24. Amosov, G.G., Korennoy, Ya.A., Man’ko, V.I.: Description and measurement of observables in the optical tomographic probability representation of quantum mechanics. Phys. Rev. A 85, 052119 (2012)

    ADS  Google Scholar 

  25. Man’ko, O.V., Man’ko, V.I.: Quantum states in probability representation and tomography. J. Russ. Laser Res. 18, 407 (1997)

    Google Scholar 

  26. Hillery, M., O’Connell, R.F., Scully, M.O., Wigner, E.P.: Distribution functions in physics: Fundamentals. Phys. Rep. 106, 121 (1984)

    ADS  MathSciNet  Google Scholar 

  27. Man’ko, M.A., Man’ko, V.I.: Dynamic symmetries and entropic inequalities in the probability representation of quantum mechanics. AIP Conf. Proc. 1334, 217 (2011)

    ADS  Google Scholar 

  28. Man’ko, M.A., Man’ko, V.I., De Nicola, S., Fedele, R.: Probability representation and new entropic uncertainty relations for symplectic and optical tomograms. Acta Phys. Hung. B 26, 71 (2006)

    Google Scholar 

  29. De Nicola, S., Fedele, R., Man’ko, M.A., Man’ko, V.I.: New uncertainty relations for tomographic entropy: Application to squeezed states and solitons. Eur. Phys. J. B 52, 191 (2006)

    ADS  Google Scholar 

  30. Hirschman, I.I.: A note on entropy. Amer. J. Math. 79, 152 (1957)

    MathSciNet  MATH  Google Scholar 

  31. Man’ko, O.V., Man’ko, V.I.: Classical mechanics is not the \(\hbar \to 0\) limit of quantum mechanics. J. Rus. Laser Res. 25, 477 (2004)

    Google Scholar 

  32. Korennoy, Ya.A., Man’ko, V.I.: Optical tomography of photon-added coherent states, even and odd coherent states, and thermal states. Phys. Rev. A 83, 053817 (2011)

    ADS  Google Scholar 

  33. Korennoy, Ya.A., Man’ko, V.I.: Entropic and information inequalities in the tomographic probability description of spin-1 particles. Bull. Lebedev Phys. Inst. 44, 106 (2017)

    ADS  Google Scholar 

  34. Kastler, D.: The C*-algebras of a free Boson field: I. Discussion of the basic facts. Commun. Math. Phys. 1, 14 (1965)

    ADS  MathSciNet  MATH  Google Scholar 

  35. Loupias, G., Miracle-Sole, S.: C*-algèbres des systèmes canoniques. I. Commun. Math. Phys. 2, 31 (1966)

    ADS  MATH  Google Scholar 

  36. Loupias, G., Miracle-Sole, S.: C*-algèbre des systèmes canoniques. II. Ann. Inst. Henri Poincaré, 6, 39 (1967)

    MathSciNet  MATH  Google Scholar 

  37. Ibort, A., Man’ko, V.I., Marmo, G., Simoni, A., Ventriglia, F.: A generalized Wigner function on the space of irreducible representations of the Weyl-Heisenberg group and its transformation properties. J. Phys. A: Math. Theor. 42, 155302 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  38. Naimark, M.: Normed algebras. Wolters-Noordhoff, Gröningen (1972)

    Google Scholar 

  39. Korennoy, Ya.A., Man’ko, V.I.: Optical tomography of the distribution function of an ensemble of classical harmonic oscillators. J. Russ. Laser Res. 33, 84 (2012)

    Google Scholar 

  40. Korennoy, Ya.A., Man’ko, V.I.: Optical propagator of quantum systems in the probability representation. J. Russ. Laser Res. 32, 153 (2011)

    Google Scholar 

  41. Moyal, J.E.: Quantum mechanics as a statistical theory. Proc. Cambrige Philos. Soc. 45, 99 (1949)

    ADS  MathSciNet  MATH  Google Scholar 

  42. Mizrahi, S.S.: Quantum mechanics in the Gaussian wave-packet phase space representation II: Dynamics. Physica A 135, 237 (1986)

    ADS  MathSciNet  Google Scholar 

  43. Fehske, H., Schleedea, J., Schubert, G., Wellein, G., Filinov, V.S., Bishop, A.R.: Numerical approaches to time evolution of complex quantum systems. Phys. Lett. A 373, 2182 (2009)

    ADS  MATH  Google Scholar 

  44. Schubert, G., Filinov, V.S., Matyash, K., Schneider, R., Fehske, H.: Comparative study of semiclassical approaches to quantum dynamics. Int. J. Mod. Phys. C 20, 1155 (2009)

    ADS  MATH  Google Scholar 

  45. Lozovik, Yu.E., Filinov, A.V., Arkhipov, A.S.: Simulation of wave packet tunneling of interacting identical particles. Phys. Rev. E 67, 026707 (2003)

    ADS  Google Scholar 

  46. Lozovik, Yu.E., Sharapov, V.A., Arkhipov, A.S.: Simulation of tunneling in the quantum tomography approach. Phys. Rev. A 69, 022116 (2004)

    ADS  Google Scholar 

Download references

Acknowledgements

VIM is supported by Russian Science Foundation under Project No. 16-11-00084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. A. Korennoy.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korennoy, Y.A., Man’ko, V.I. Conditions for Quantum and Classical Tomogram-Like Functions to Describe System States and to Retain Normalizations During Time Evolution. Int J Theor Phys 59, 574–595 (2020). https://doi.org/10.1007/s10773-019-04350-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04350-x

Keywords

Navigation