Skip to main content
Log in

Adiabatic Shortcut in Nonlinear Two-Level system

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this work, we have investigated the adiabatic shortcut for nonlinear two-level system by adding a linear counter-adiabatic field in nonlinear LZ protocol. The results show that, unlike the linear two-level system, the fidelity between the target state and the final state is highly dependent on the type of nonlinear interaction and strength. The additional linear counter-adiabatic field can promote the adiabatic process on both repulsive and attractive interactions. For the repulsive interaction, the fidelity between the final state and the target state can always reach to 1 as the time duration increases. For the attractive interaction, the additional linear counter-adiabatic field can depress the critical effects which break the adiabaticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Berry, M.V.: Transitionless quantum driving. J. Phys. A 42(36), 365303 (2009)

    Article  MathSciNet  Google Scholar 

  2. Zhang, J., Shim, J. H., Niemeyer, I., Taniguchi, T., Teraji, T., Abe, H., Onoda, S., Yamamoto, T., Ohshima, T., Isoya, J., Suter, D.: Experimental implementation of assisted quantum adiabatic passage in a single spin. Phys. Rev. Lett. 110, 240501 (2013)

    Article  ADS  Google Scholar 

  3. Chen, X., Ruschhaupt, A., Schmidt, S., del Campo, A., Guéry-Odelin, D., Muga, J. G.: Fast optimal frictionless atom cooling in harmonic traps: Shortcut to adiabaticity. Phys. Rev. Lett. 104, 063002 (2010)

    Article  ADS  Google Scholar 

  4. del Campo, A.: Shortcuts to adiabaticity by counterdiabatic driving. Phys. Rev. Lett. 111, 100502 (2013)

    Article  ADS  Google Scholar 

  5. del Campo, A.: Frictionless quantum quenches in ultracold gases: A quantum-dynamical microscope. Phys. Rev. A 84, 031606 (2011)

    Article  ADS  Google Scholar 

  6. Chen, Y.H., Shi, Z.C., Song, J., Xia, Y.: Invariant-based inverse engineering for fluctuation transfer between membranes in an optomechanical cavity system. Phys. Rev. A 97(2), 023841 (2018)

    Article  ADS  Google Scholar 

  7. Lu, M., Xia, Y., Shen, L.T., Song, J., An, N.B.: Shortcuts to adiabatic passage for population transfer and maximum entanglement creation between two atoms in a cavity. Phys. Rev. A 89(1), 012326 (2014)

    Article  ADS  Google Scholar 

  8. Chen, Y.H., Xia, Y., Wu, Q.C., Huang, B.H., Song, J.: Method for constructing shortcuts to adiabaticity by a substitute of counterdiabatic driving terms. Phys. Rev. A 93(5), 052109 (2016)

    Article  ADS  Google Scholar 

  9. Chen, X., Torrontegui, E., Muga, J. G.: Lewis-riesenfeld invariants and transitionless quantum driving. Phys. Rev. A 83, 062116 (2011)

    Article  ADS  Google Scholar 

  10. Milburn, G. J., Corney, J., Wright, E. M., Walls, D. F.: Quantum dynamics of an atomic bose-einstein condensate in a double-well potential. Phys. Rev. A 55, 4318 (1997)

    Article  ADS  Google Scholar 

  11. Wu, B., Niu, Q.: Nonlinear landau-zener tunneling. Phys. Rev. A 61, 023402 (2000)

    Article  ADS  Google Scholar 

  12. Micheli, A., Jaksch, D., Cirac, J. I., Zoller, P.: Many-particle entanglement in two-component bose-einstein condensates. Phys. Rev. A 67, 013607 (2003)

    Article  ADS  Google Scholar 

  13. Tonel, A., Links, J., Foerster, A.: Quantum dynamics of a model for two josephson-coupled bose–einstein condensates. J. Phys. A 38(6), 1235 (2005)

    Article  ADS  Google Scholar 

  14. Dou, F. Q., Fu, L. B., Liu, J.: High-fidelity fast quantum driving in nonlinear systems. Phys. Rev. A 89, 012123 (2014)

    Article  ADS  Google Scholar 

  15. Dou, F. Q., Cao, H., Liu, J., Fu, L. B.: High-fidelity composite adiabatic passage in nonlinear two-level systems. Phys. Rev. A 93, 043419 (2016)

    Article  ADS  Google Scholar 

  16. Chen, X., Ban, Y., Hegerfeldt, G. C.: Time-optimal quantum control of nonlinear two-level systems. Phys. Rev. A 94, 023624 (2016)

    Article  ADS  Google Scholar 

  17. Dou, F. Q., Liu, J., Fu, L. B.: Fast quantum driving in two-level systems with interaction and nonlinear sweep. Phys. Rev. A 98, 022102 (2018)

    Article  ADS  Google Scholar 

  18. Leggett, A. J.: Bose-einstein condensation in the alkali gases: Some fundamental concepts. Rev. Mod. Phys. 73, 307–356 (2001)

    Article  ADS  Google Scholar 

  19. Cirac, J. I., Lewenstein, M., Mo, K., Zoller, P.: Quantum superposition states of Bose-Einstein condensates. Phys. Rev. A 57(2), 1208–1218 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (NSFC) (Grants No. 11875103), and the Scientific and Technological Program of Jilin Educational Committee during the Thirteenth Five-year Plan Period (Grant No. JJKH20180009KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Liu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J.H., Zhang, Y.N., Liu, Y. et al. Adiabatic Shortcut in Nonlinear Two-Level system. Int J Theor Phys 59, 507–513 (2020). https://doi.org/10.1007/s10773-019-04345-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04345-8

Keywords

Navigation