Skip to main content
Log in

Entanglement in Phase Estimation Algorithm and Quantum Counting Algorithm

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

For some certain problems, quantum algorithms are theoretically able to solve them quickly than classical algorithms. But the role of entanglement in achieving the quantum computational speedup is not fully understood. By theoretical analysis and numerical calculation of four practical use cases, we investigate the entanglement features of the quantum states employed in quantum phase estimation algorithm and quantum counting algorithm. The results show that whether these two algorithms generate entanglement depend on whether the input quantum state of the second register is a superposition state of the eigenstates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chakraborty, S., Banerjee, S., Adhikari, S., Kumar, A.: Entanglement in the grover’s search algorithm. arXiv:1305.4454 (2013)

  2. Chamoli, A., Bhandari, C.: Groverian entanglement measure and evolution of entanglement in search algorithm for n(= 3, 5)-qubit systems with real coefficients. Quantum Inf. Process 6(4), 255–271 (2007)

    Article  MathSciNet  Google Scholar 

  3. Qu, R., Shang, B., Bao, Y., Song, D., Teng, C., Zhou, Z.: Multipartite entanglement in grover’s search algorithm. Nat. Comput. 14(4), 683–689 (2015)

    Article  MathSciNet  Google Scholar 

  4. Rossi, M., Bru Ss, D., Macchiavello, C.: Scale invariance of entanglement dynamics in grover’s quantum search algorithm. Phys. Rev. A 87(2), 022331 (2013)

    Article  ADS  Google Scholar 

  5. Shimoni, Y., Shapira, D., Biham, O.: Entangled quantum states generated by shor’s factoring algorithm. Phys. Rev. A 72(6), 062308 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  6. Kendon, V.M., Munro, W.J.: Entanglement and its role in shor’s algorithm. arXiv:quant-ph/0412140 (2004)

  7. Most, Y., Shimoni, Y., Biham, O.: Entanglement of periodic states, the quantum fourier transform, and shor’s factoring algorithm. Phys. Rev. A 81, 052306 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bru Ss, D., Macchiavello, C.: Multipartite entanglement in quantum algorithms. Phys. Rev. A 83(5), 052313 (2011)

    Article  ADS  Google Scholar 

  9. Jozsa, R., Linden, N.: On the role of entanglement in quantum-computational speed-up (2003)

  10. Batle, J., Raymond Ooi, C.H., Farouk, A., Alkhambashi, M. S., Abdalla, S.: Global versus local quantum correlations in the grover search algorithm. Quantum Inf. Process. 15(2), 833–849 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  11. Zhao, C., Guo-wu, Y.: A multipartite entanglement measure based on coefficient matrices. Quantum Inf. Process 14(8), 2861–2881 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  12. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  13. Boyer, M.l, Brassard, G., Yer, P.H.O., Tapp, A.: Tight bounds on quantum searching. arXiv:quant-ph/9605034 quant-ph/9605034 (1996)

  14. Mosca, M.: Counting by quantum eigenvalue estimation. Theor. Comput. Sci. 264(1), 139–153 (2001)

    Article  MathSciNet  Google Scholar 

  15. Tan, J., Yue, R.: Generalized quantum counting algorithm for non-uniform amplitude distribution. Quantum Inf. Process 16(3), 62 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  16. Brassard, G., Hoyer, P., Tapp, A.: Quantum counting. arXiv:quant-ph/9805082 (1998)

  17. Lov, K.: Grover A fast quantum mechanical algorithm for database search (1996)

  18. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79(2), 325 (1997)

    Article  ADS  Google Scholar 

  19. Yu Kitaev, A.: Quantum measurements and the abelian stabilizer problem. arXiv:quant-ph/9511026 (1995)

  20. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited (1998)

  21. Mosca, M.: Quantum computer algorithms. phdmosca1999quantum. University of Oxford, Oxford (1999)

    Google Scholar 

  22. Mosca, M., et al.: Quantum searching counting and amplitude amplification by eigenvector analysis (1998)

  23. Li, X., Li, D.: Classification of general n-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix. Phys. Rev. Lett. 108, 180502 (2012)

    Article  ADS  Google Scholar 

  24. Li, X., Li, D.: Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states. Phys. Rev. A 86, 042332 (2012)

    Article  ADS  Google Scholar 

  25. Bhaskara, V.S., Panigrahi, P.K.: Generalized concurrence measure for faithful quantification of multiparticle pure state entanglement using lagrange’s identity and wedge product. Quantum Inf. Process 16(5), 118 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61170321,61502101,61871120,61802002), Natural Science Foundation of Jiangsu Province, China (Grant No. BK20140651), Natural Science Foundation of Anhui Province, China (Grant No. 1608085MF129), Research Fund for the Doctoral Program of Higher Education (Grant No. 20110092110024), Foundation for Natural Science Major Program of Education Bureau of Anhui Province (Grant No. KJ2015ZD09) and the open fund of Key Laboratory of Computer Network and Information Integration in Southeast University, Ministry of Education, China (Grant No. K93-9-2015-10C).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhihao Liu or Hanwu Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, J., Liu, Z. & Chen, H. Entanglement in Phase Estimation Algorithm and Quantum Counting Algorithm. Int J Theor Phys 59, 1372–1381 (2020). https://doi.org/10.1007/s10773-019-04341-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04341-y

Keywords

Navigation