Skip to main content
Log in

Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically present an optomechanical cooling scheme of a double optical modes which are coupled with the same mechanical resonator by the radiation pressure to analyze the dynamical cooling of a micromechanical membrane. The mean value of the total second-order moments are obtained by solving linearized quantum Langevin equations. We discuss the effect of the significant parameters of the system on the instantaneous-state mean phonon number of the oscillator cooled to the ground state under the resolved sideband regime. Furthermore, the steady-state cooling limit is also studied and the results show that the final mean phonon number splits into two minimum values when the detunings of the two cavity modes are different. Moreover, the minimal value of the final mean phonon number is much less than the case of equal driving detuning. By regulating the detunings of the optical modes from the corresponding driving fields and increasing the coupling strengths, the cooling effect will be optimized obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  2. Meystre, P.: A short walk through quantum optomechanics. Ann. Phys. (Berlin) 525, 215 (2013)

    Article  ADS  Google Scholar 

  3. Regal, C.A., Teufel, J.D., Lehnert, K.W.: Frequency and Q factor control of nanomechanical resonators. Nat. Phys. 4, 974 (2008)

    Article  Google Scholar 

  4. Peng, H.B., Chang, C.W., Aloni, S., Yuzvinsky, T.D., Zettl, A.: Ultrahigh frequency nanotube resonators. Phys. Rev. Lett. 97, 087203 (2006)

    Article  ADS  Google Scholar 

  5. Naik, A.K., Hanay, M.S., Hiebert, W.K., Feng, X.L., Roukes, M.L.: Towards single-molecule nanomechanical mass spectrometry. Nat. Nanotechnol. 4, 445 (2009)

    Article  ADS  Google Scholar 

  6. Suh, J., Weinstein, A.J., Lei, C.U., et al.: Mechanically detecting and avoiding the quantum fluctuations of a microwave field. Science 344, 1262 (2014)

    Article  ADS  Google Scholar 

  7. Hertzberg, J.B., Rocheleau, T., Ndukum, T., et al.: Back-action-evading measurements of nanomechanical motion. Nat. Phys. 10, 213 (2010)

    Article  Google Scholar 

  8. Palomaki, T.A., Teufel, J.D., Simmonds, R.W., Lehnert, K.W.: Entangling mechanical motion with microwave fields. Science 342, 710 (2013)

    Article  ADS  Google Scholar 

  9. Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    Article  ADS  Google Scholar 

  10. Mari, A., Eisert, J.: Opto- and electro-mechanical entanglement improved by modulation. New J. Phys. 14, 1 (2012)

    Article  Google Scholar 

  11. Hofer, S.G., Wieczorek, W., Aspelmeyer, M., Hammerer, K.: Quantum entanglement and teleportation in pulsed cavity optomechanics. Phys. Rev. A 84, 052327 (2011)

    Article  ADS  Google Scholar 

  12. Qin, W., Miranowicz, A., Li, P.B., Lü, X.Y., You, J.Q., Nori, F.: Exponentially enhanced light-matter interaction, cooperativities, and steady-state entanglement using parametric amplification. Phys. Rev. Lett. 120, 093601 (2018)

    Article  ADS  Google Scholar 

  13. Brooks, D.W.C., Botter, T., Schreppler, S., et al.: Non-classical light generated by quantum-noise-driven cavity optomechanics. Nature 488, 476 (2012)

    Article  ADS  Google Scholar 

  14. Purdy, T.P., Yu, P.L., Peterson, R.W., Kampel, N.S., Regal, C.A.: Strong optomechanical squeezing of light. Phys. Rev. X 3, 031012 (2013)

    Google Scholar 

  15. Safavi-Naeini, A.H., Gröblacher, S., Hill, J.T., et al.: Squeezed light from a silicon micromechanical resonator. Nature 500, 185 (2013)

    Article  ADS  Google Scholar 

  16. Szorkovszky, A., Brawley, G.A., Doherty, A.C., Bowen, W.P.: Strong thermomechanical squeezing via weak measurement. Phys. Rev. Lett. 110, 184301 (2013)

    Article  ADS  Google Scholar 

  17. Asjad, M., Agarwal, G.S., Kim, M.S., Tombesi, P., Di Giuseppe, G., Vitali, D.: Robust stationary mechanical squeezing in a kicked quadratic optomechanical system. Phys. Rev. A 89, 023849 (2014)

    Article  ADS  Google Scholar 

  18. Pontin, A., Bonaldi, M., Borrielli, A., Cataliotti, F.S., Marino, F., Prodi, G.A., Serra, E., Marin, F.: Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring. Phys. Rev. Lett. 112, 023601 (2014)

    Article  ADS  Google Scholar 

  19. Gigan, S., Bhm, H.R., Paternostro, M., Blaser, F., Langer, G., Hertzberg, J.B., Schwab, K.C., Bauerle, D., Aspelmeyer, M., Zeilinger, A.: Self-cooling of a micromirror by radiation pressure. Nature 444, 67 (2006)

    Article  ADS  Google Scholar 

  20. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 321, 1172 (2008)

    Article  ADS  Google Scholar 

  21. Wang, Y., Li, C., Sampuli, E.M., Song, J., Jiang, Y.Y., Xia, Y.: Enhancement of coherent dipole coupling between two atoms via squeezing a cavity mode. Phys. Rev. A 99, 023833 (2019)

    Article  ADS  Google Scholar 

  22. Genes, C., Vitali, D., Tombesi, P., Gigan, S., Aspelmeyer, M.: Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes. Phys. Rev. A 77, 033804 (2008)

    Article  ADS  Google Scholar 

  23. Li, Y., Wu, L.A., Wang, Z.D.: Fast ground-state cooling of mechanical resonators with time-dependent optical cavities. Phys. Rev. A 83, 043804 (2011)

    Article  ADS  Google Scholar 

  24. Karuza, M., Molinelli, C., Galassi, M., Biancofiore, C., Natali, R., Tombesi, P., Di, Giuseppe, Di Giuseppe, G., Vitali, D.: Optomechanical sideband cooling of a thin membrane within a cavity. New J. Physics 14, 095015 (2012)

    Article  ADS  Google Scholar 

  25. Triana, J.F., Estrada, A.F., Pachón, L.A.: Ultrafast optimal sideband cooling under non-Markovian evolution. Phys. Rev. Lett. 116, 183602 (2016)

    Article  ADS  Google Scholar 

  26. Kleckner, D., Bouwmeester, D.: Sub-kelvin optical cooling of a micromechanical resonator. Nature 444, 75 (2006)

    Article  ADS  Google Scholar 

  27. Corbitt, T., Wipf, C., Bodiya, T., Ottaway, D., Sigg, D., Smith, N., Whitcomb, S., Mavalvala, N.: Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK. Phys. Rev. Lett. 99, 160801 (2007)

    Article  ADS  Google Scholar 

  28. Poggio, M., Degen, C.L., Mamin, H.J., Rugar, D.: Role of spin noise in the detection of nanoscale ensembles of nuclear spins. Phys. Rev. Lett. 99, 250601 (2007)

    Article  Google Scholar 

  29. Barzanjeh, S., Naderi, M.H., Soltanolkotabi, M.: Back-action ground-state cooling of a micromechanical membrane via intensity-dependent interaction. Phys. Rev. A 84, 023803 (2011)

    Article  ADS  Google Scholar 

  30. Restrepo, J., Gabelli, J., Ciuti, C., Favero, I.: Classical and quantum theory of photothermal cavity cooling of a mechanical oscillator. Comptes Rendus Physique 12, 860 (2011)

    Article  ADS  Google Scholar 

  31. Yasir, K.A., Zhuang, L., Liu, W.M.: Spin-orbit-coupling-induced backaction cooling in cavity optomechanics with a Bose-Einstein condensate. Phys. Rev. A 95, 013810 (2017)

    Article  ADS  Google Scholar 

  32. Xu, M., Jäger, S.B., Schütz, S., Cooper, J., Morigi, G., Holland, M.J.: Supercooling of atoms in an optical resonator. Phys. Rev. Lett. 116, 153002 (2016)

    Article  ADS  Google Scholar 

  33. Liu, Y.C., Xiao, Y.F., Luan, X., Wong, C.W.: Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett. 110, 153606 (2013)

    Article  ADS  Google Scholar 

  34. Lai, D.G., Zou, F., Hou, B.P., Xiao, Y.F., Liao, J.Q.: Simultaneous cooling of coupled mechanical resonators in cavity optomechanics. Phys. Rev. A 98, 023860 (2018)

    Article  ADS  Google Scholar 

  35. Huan, T.T., Zhou, R.G., Lan, H.: Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A 92, 022301 (2015)

    Article  ADS  Google Scholar 

  36. Liu, Y.L., Liu, Y.X.: Energy-localization-enhanced ground-state cooling of a mechanical resonator from room temperature in optomechanics using a gain cavity. Phys. Rev. A 96, 023812 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

Qingxia Mu thanks Xinyu Zhao for valuable discussions. This work was supported by the Fundamental Research Funds for the Central Universities (2018MS056) and National Natural Science Foundation of China (NSFC) (11605055, 11574082).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingxia Mu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, Q., Lang, C. & Lin, P. Dynamic Cooling of a Micromechanical Membrane in a Double-cavity Optomechanical System. Int J Theor Phys 59, 454–464 (2020). https://doi.org/10.1007/s10773-019-04339-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04339-6

Keywords

Navigation