Skip to main content
Log in

Efficient Quantum Secure Direct Communication Protocol Based on Quantum Channel Compression

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The article presents the concept of quantum channel compression—decrease in the amount of qubits utilized in a protocol—which is achieved by means of data source encoding. It is also a report on an efficient quantum secure direct communication (QSDC) protocol, which is used for transferring predetermined cryptographic keys (e.g., keys that are generated by the algorithm of Advanced Encryption Standard). This type of quantum secure communication combines the ideas of dense coding process and quantum channel compression. It is justified that such a protocol obtains overall transfer efficiency over unity, i.e., over 100%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Communication via one- and Two-Particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Bostroem, K., Felbinger, T.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  3. Cai, Q.Y., Li, B.W.: Deterministic secure communication without using entanglement. Chin. Phys. Lett. 21, 601 (2004)

    Article  ADS  Google Scholar 

  4. Long, G.L., Liu, X.S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  5. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  6. Wang, C., Deng, F., Li, Y., Liu, X., Long, G.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  7. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69, 052319 (2004)

    Article  ADS  Google Scholar 

  8. Banerjee, A., Pathak, A.: Maximally efficient protocols for direct secure quantum communication. Phys. Lett. A 376, 2944 (2012)

    Article  ADS  Google Scholar 

  9. Tsai, C.W., Hsieh, C.R., Hwang, T.: Dense coding using cluster states and its application on deterministic secure quantum communication. Eur. Phys. J. D 61, 783 (2011)

    Article  ADS  Google Scholar 

  10. Hassanpour, S., Houshmand, M.: Efficient controlled quantum secure direct communication based on GHZ-like states. QIP 14, 739 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Joy, D., Surendran, S., Sabir, M.: Efficient deterministic secure quantum communication protocols using multipartite entangled states. QIP 16, 1 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Yan, F., Zhang, X.: A scheme for secure direct communication using EPR pairs and teleportation. Eur. Phys. J. B. 41, 75 (2004)

    Article  ADS  Google Scholar 

  13. Gao, T., Yan, F., Wang, X.: Controlled quantum teleportation and secure direct communication. Chin. Phys. 14, 893 (2005)

    Article  ADS  Google Scholar 

  14. Zhu, A., Xia, Y., Fan, Q., Zhang, S.: Secure direct communication based on secret transmitting order of particles. Phys. Rev. A 73, 022338 (2006)

    Article  ADS  Google Scholar 

  15. Pathak, A.: Efficient protocols for unidirectional and bidirectional controlled deterministic secure quantum communication: Different alternative approaches. QIP 14, 2195 (2015)

    MathSciNet  MATH  Google Scholar 

  16. Cao, Z., Li, Y., Peng, J., Chai, G., Zhao, G.: Controlled quantum secure direct communication protocol based on huffman compression coding. Int. J. Theor. Phys. 57, 3632 (2018)

    Article  MathSciNet  Google Scholar 

  17. Wilde, M.: Quantum Information Theory, 2nd edn., pp 192–193. Cambridge University Press, New York (2017)

    Book  Google Scholar 

  18. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635 (2000)

    Article  ADS  Google Scholar 

  19. Kiesel, N., Schmid, C., Weber, U., Toth, G., Guhne, O., Ursin, R., Weinfurter, H.: Experimental analysis of a Four-Qubit photon cluster state. Phys. Rev. Lett. 95, 210502 (2005)

    Article  ADS  Google Scholar 

  20. Huffman, D.: A method for the construction of minimum-redundancy codes. Proceeding of the IRE 40, 1098 (1952)

    Article  Google Scholar 

Download references

Acknowledgements

The work is supported by the projects 07/10-2016, 01/05-2018, and programme YRPD, which are funded by National Science Fund, Ministry of Education and Science, Bulgaria.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Bebrov.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bebrov, G., Dimova, R. Efficient Quantum Secure Direct Communication Protocol Based on Quantum Channel Compression. Int J Theor Phys 59, 426–435 (2020). https://doi.org/10.1007/s10773-019-04336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04336-9

Keywords

Navigation