Skip to main content
Log in

Quantum Speed Limit of a Two-Level System Interacting with Multiple Bosonic Reservoirs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A physical model for a two-level atom simultaneously coupled to multiple Bosonic reservoirs is investigated. The explicit expression of quantum speed limit is obtained. Analysis show that as long as the number of reservoirs satisfies certain conditions, whether it is strong coupling or weak coupling, the system will show a non-Markovian effect. Numerical simulation show that the non-Markovian effect of the system increases with the increase of reservoir number. Further investigation shows that the stronger the non-Markovian effect is, the faster the evolution acceleration of quantum system will be.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mandelstam, L., Tamm, I.: . J. Phys. 9, 249 (1945)

    Google Scholar 

  2. Margolus, N., Levitin, L.B.: . Physica D 120, 188 (1998)

    Article  ADS  Google Scholar 

  3. Pfeifer, P.: . Phys. Rev. Lett. 70, 3365 (2008)

    Article  ADS  Google Scholar 

  4. Pfeifer, P., Frohlich, J.: . Rev. Mod. Phys. 67, 759 (1995)

    Article  ADS  Google Scholar 

  5. Giovannetti, V., Lloyd, S., Maccone, L.: . Phys. Rev. A 67, 052109 (2003)

    Article  ADS  Google Scholar 

  6. Luo, S.: . Physica D 189, 1 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  7. Jones, P.J., Kok, P.: . Phys. Rev. A 82, 022107 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zwierz, M.: . Phys. Rev. A 86, 016101 (2012)

    Article  ADS  Google Scholar 

  9. Deffner, S., Lutz, E.: . J. Phys. A: Math. Theor. 46, 335302 (2013)

    Article  Google Scholar 

  10. Taddei, M.M., Escher, B.M., Davidovich, L., Matos Filho, R.L.: . Phys. Rev. Lett. 110, 050402 (2013)

    Article  ADS  Google Scholar 

  11. Campo, A., Egusquiza, I.L., Plenio, M.B., Huelga, S.F.: . Phys. Rev. Lett. 110, 050403 (2013)

    Article  Google Scholar 

  12. Deffner, S., Lutz, E.: . Phys. Rev. Lett. 111, 010402 (2013)

    Article  ADS  Google Scholar 

  13. Cimmarusti, A.D., Yan, Z., Patterson, B.D., Corcos, L.P., Orozco, L.A., Deffner, S.: . Phys. Rev. Lett. 114, 233602 (2015)

    Article  ADS  Google Scholar 

  14. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: . Sci. Rep. 4, 4890 (2014)

    Article  Google Scholar 

  15. Sun, Z., Liu, J., Ma, J., Wang, X.: . Sci. Rep. 5, 8444 (2015)

    Article  ADS  Google Scholar 

  16. Xu, Z.Y.: . New J. Phys. 18, 073005 (2016)

    Article  ADS  Google Scholar 

  17. Jing, J., Wu, L.A., del Campo, A.: . Sci. Rep. 6, 38149 (2016)

    Article  ADS  Google Scholar 

  18. Xu, Z.Y., Zhu, S.Q.: . Chin. Phys. Lett. 31, 020301 (2014)

    Article  ADS  Google Scholar 

  19. Xu, Z.Y., Luo, S., Yang, W.L., Liu, C., Zhu, S.Q.: . Phys. Rev. A 89, 012307 (2014)

    Article  ADS  Google Scholar 

  20. Zhang, Y.J., Han, W., Xia, Y.J., Cao, J.P., Fan, H.: . Phys. Rev. A 91, 032112 (2015)

    Article  ADS  Google Scholar 

  21. Liu, C., Xu, Z.Y., Zhu, S.Q.: . Phys. Rev. A 91, 022102 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  22. Marvian, I., Lidar, D.A.: . Phys. Rev. Lett. 115, 210402 (2015)

    Article  ADS  Google Scholar 

  23. Marvian, I., Spekkens, R.W., Zanardi, P.: . Phys. Rev. A 93, 052331 (2016)

    Article  ADS  Google Scholar 

  24. Han, W., Jiang, K.X., Zhang, Y.J., Xia, Y.J.: . Chin. Phys. B 24, 120304 (2015)

    Article  ADS  Google Scholar 

  25. Liu, H.B., Yang, W.L., An, J.H., Xu, Z.Y.: . Phys. Rev. A 93, 020105 (2016)

    Article  ADS  Google Scholar 

  26. Martens, C.C.: . J. Chem. Phys. 133, 241101 (2010)

    Article  ADS  Google Scholar 

  27. Martens, C.C.: . J. Phys. B: At. Mol. Opt. Phys. 45, 154008 (2012)

    Article  ADS  Google Scholar 

  28. Lombardo, F.C., Villar, P.I.: . Phys. Rev. A 87, 032338 (2013)

    Article  ADS  Google Scholar 

  29. Lombardo, F.C., Villar, P.I.: . Phys. Rev. A 91, 042111 (2015)

    Article  ADS  Google Scholar 

  30. Yu, W.J., Wei, Y.B., Li, H., Li, L., Zou, J., S, B.: . Int. J Theor. Phys. 55, 4785 (2016)

    Article  Google Scholar 

  31. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  32. Breuer, H.P., Laine, E.M., Piilo, J.: . Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  33. Wissmann, S., Karlsson, A., Laine, E.M.: . Phys. Rev. A 86, 062108 (2012)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundation of China (Grant No. 61605019), the China Postdoctoral Science Foundation (Grant No. 2017M622582), the Research Foundation of Education Bureau of Hunan Province, China (Grants No. 18B601,16B177 and 16B023). Qiong Wang is supported by the Program of Hehua Excellent Young Talents, Changsha Normal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, PH., Peng, GF., He, Z. et al. Quantum Speed Limit of a Two-Level System Interacting with Multiple Bosonic Reservoirs. Int J Theor Phys 59, 321–330 (2020). https://doi.org/10.1007/s10773-019-04325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04325-y

Keywords

Navigation