International Journal of Theoretical Physics

, Volume 59, Issue 1, pp 250–260 | Cite as

Effect of Fluctuation in the Coupling Strength on Critical Dynamics of 1D Transverse Field Quantum Ising Model

  • S. Y. PangEmail author
  • S. V. Muniandy
  • M. Z. M. Kamali


The effect of uniformly distributed fluctuation in the coupling strength of a 100 spins transverse field quantum Ising chain is studied using the Density Matrix Renormalization Group on the Matrix Product States formalism. Uniform noise with mean zero and amplitude η is introduced to uniform nearest neighbour coupling of value unity. Disordered averages of thermodynamic quantities are calculated from 100 disordered realizations for each transverse field reading. We show that the system exhibits distinct behaviour of ordered and disordered state separated at η~1.0. For η ≲ 1.0, thermodynamic behaviour of the system gradually deviates from pure quantum Ising model. For η > 1.0 system exhibits highly fluctuating thermodynamic behaviour. Edward-Anderson order parameters are calculated and shown to be much less fluctuating and suitable as an order parameter for η > 1.0. Qualitative behaviour of the system is not affected by finite-size effect and replacing the fluctuation with normally distributed noise. Finally, for noise level between η = 1.0 and 1.5, the system exhibits a faster phase transition and enhances transverse magnetization before the critical point. For certain ranges of noise amplitude before the critical point, the quantum fluctuations are amplified. This suggests a potential improvement of quantum annealing within that regime.


Quantum Ising model Random/Noisy Coupling Matrix Product States Critical Dynamics 



The authors thank the Malaysian Ministry of Higher Education (MOHE) for FRGS grant: FP031-2017A and University of Malaya Frontier Research Grant: FG032-17AFR. S.Y. Pang thanks Dr. Miles Stoudenmire for his kind assistance in technical matters related to the ITensor Library. S.Y. Pang is supported by Skim Biasiswa MyBrainSc Scholarship under the Malaysian Ministry of Higher Education (MOHE).


  1. 1.
    Inoue, J.I.: Application of the quantum spin glass theory to image restoration. Phys. Rev. E. 63(4), 046114 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    Venturelli, D., Mandra, S., Knysh, S., O’Gorman, B., Biswas, R., Smelyanskiy, V.: Quantum optimization of fully connected spin glasses. Physical Review X. 5(3), 031040 (2015)ADSCrossRefGoogle Scholar
  3. 3.
    McMahon, P.L., Marandi, A., Haribara, Y., Hamerly, R., Langrock, C., Tamate, S., et al.: A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science. 354(6312), 614–617 (2016)ADSCrossRefGoogle Scholar
  4. 4.
    Blinc, R.: On the isotopic effects in the ferroelectric behaviour of crystals with short hydrogen bonds. J. Phys. Chem. Solids. 13(3–4), 204–211 (1960)ADSCrossRefGoogle Scholar
  5. 5.
    Sengupta, K., Powell, S., Sachdev, S.: Quench dynamics across quantum critical points. Phys. Rev. A. 69, 053616 (2004)ADSCrossRefGoogle Scholar
  6. 6.
    Calabrese, P., Cardy, J.: Time dependence of correlation functions following a quantum quench. Phys. Rev. Lett. 96, 136801 (2006)ADSCrossRefGoogle Scholar
  7. 7.
    Rossini, D., Silva, A., Mussardo, G., Santoro, G.E.: Effective thermal dynamics following a quantum quench in a spin chain. Phys. Rev. Lett. 102, 127204 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    Kadowaki, T., Nishimori, H.: Quantum annealing in the transverse Ising model. Phys. Rev. E. 58, 5355–5363 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (2000)Google Scholar
  10. 10.
    Jouzdani, P., Novais, E., Tupitsyn, I.S., Mucciolo, E.R.: Fidelity threshold of the surface code beyond single-qubit error models. Phys. Rev. A. 90(4), 042315 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    de Falco, D., Tamascelli, D.: An introduction to quantum annealing. RAIRO-Theoretical Informatics and Applications. 45(1), 99–116 (2011)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kryzhanovsky, B., Malsagov, M., Karandashev, I.: Investigation of finite-size 2D Ising model with a noisy matrix of spin-spin interactions. Entropy. 20(8), 585 (2018)ADSCrossRefGoogle Scholar
  13. 13.
    Sondhi, S.L., Girvin, S.M., Carini, J.P., Shahar, D.: Continuous quantum phase transitions. Rev. Mod. Phys. 69(1), 315 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    Chakrabarti, B.K.: Critical behaviour of the Ising spin-glass models in a transverse field. Phys. Rev. B. 24(7), 4062 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    Dos Santos, R.R., dos Santos, R.Z., Kischinhevsky, M.: Transverse Ising spin-glass model. Phys. Rev. B. 31(7), 4694 (1985)ADSCrossRefGoogle Scholar
  16. 16.
    Eisert, J., Cramer, M., Plenio, M.B.: Colloquium: Area laws for the entanglement entropy. Rev. Mod. Phys. 82(1), 277 (2010)ADSMathSciNetCrossRefGoogle Scholar
  17. 17.
    Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)ADSCrossRefGoogle Scholar
  18. 18.
    Sachdev, S.: Quantum phase transitions. Cambridge University Press, New York (2011)CrossRefGoogle Scholar
  19. 19.
    Elliott, R.J., Pfeuty, P., Wood, C.: Ising model with a transverse field. Phys. Rev. Lett. 25(7), 443 (1970)ADSCrossRefGoogle Scholar
  20. 20.
    Park, S.B., Cha, M.C.: Matrix product state approach to the finite-size scaling properties of the one-dimensional critical quantum Ising model. J. Korean Phys. Soc. 67(9), 1619–1623 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    Schollwöck, U.: The density-matrix renormalization group. Rev. Mod. Phys. 77(1), 259 (2005)ADSMathSciNetCrossRefGoogle Scholar
  22. 22.
    Schollwöck, U.: The density-matrix renormalization group in the age of matrix product states. Ann. Phys. 326(1), 96–192 (2011)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    White, S.R.: Density matrix formulation for quantum renormalization groups. Phys. Rev. Lett. 69(19), 2863 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    White, S.R.: Density-matrix algorithms for quantum renormalization groups. Phys. Rev. B. 48(14), 10345 (1993)ADSCrossRefGoogle Scholar
  25. 25.
    Kole, A. H.: Density Matrix Renormalization Group calculations for the Ising Model with a Transverse Field (Bachelor's thesis) (2018)Google Scholar
  26. 26.
    ITensor C++ Library, available at
  27. 27.
    Young, A. P.: Simulations of Spin Glass Systems. In Finite-size scaling and numerical simulation of statistical systems (pp. 466–488) (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Theoretical & Computational Physics, Department of PhysicsUniversity of MalayaKuala LumpurMalaysia
  2. 2.Center for Foundation Studies in ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations