Skip to main content
Log in

Single-Mode Squeezed Thermal States and Black Holes

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By using single-mode squeezed thermal states prescription, we study the particle production due to thermal black hole. We analyze that thermal squeezing for a black hole can also be a possible mechanism in order to compute the variation of entropy and mass parameter. We also find a relation of Hawking’s temperature with thermal squeezing parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Takahashi, Y., Umezawa, H.: Thermo-field dynamics. Int. J. Mod. Phys. B 10, 1755–1805 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barnett, S.M., Knight, P.L.: Thermo-field analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B2, 467 (1985)

    Article  ADS  Google Scholar 

  3. Barnett, S.M., Knight, P.L.: Squeezing in correlated quantum systems. J. Mod. Opt. 34, 841 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Hawking, S.W.: Particle creation by black holes. Commun. Math. Phys. 43, 199 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  5. Barman, S., Hossain, G.M.: Consistent derivation of the Hawking effect for both non-extremal and extremal kerr black holes. Phys. Rev. D99, 065010 (2019)

    ADS  Google Scholar 

  6. Kiefer, C., Muller, R., Singh, T.P.: Quantum gravity and non-unitarity in black hole evaporation. Mod. Phys. Lett. A 9, 2661 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bekenstin, J.D.: Black holes and entropy. Phys. Rev. D 7, 2333 (1973)

    Article  ADS  MathSciNet  Google Scholar 

  8. Page, D.N.: Is black-hole evaporation predictable. Phys.Rev.Lett. 301, 44 (1980)

    Google Scholar 

  9. Muller, R., Lousto, R.C.O.: Recovery of information from black hole radiation by considering stimulated emission. Phys. Rev. D 49, 1922 (1994)

    Article  ADS  Google Scholar 

  10. Giddings, S.W., Nelson, W.M.: Quantum emission from two-dimensional black holes. Phys. Rev D 46, 2486 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  11. Saini, A., Stojkovic, D.: Gravitational collapse and Hawking-like radiation of a shell in Ads sapcetime. Phys. Rev. D97, 025020 (2018)

    ADS  Google Scholar 

  12. Hawking, S.W.: The unpredictability of quantum gravity. Commun. Math. Phys. 87, 395 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  13. Hawking, S.W.: Breakdown of predictability in gravitational collapse. Phys. Rev. D 14, 2460 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  14. Page, D.N.: Time Dependence of Hawking Radiation Entropy. Phys. Rev. Lett. 71, 1291 (1993). [gr-qc/9305007]

    Article  ADS  MathSciNet  Google Scholar 

  15. Saini, A., Stojkovic, D.: Radiation from a collapsing object is manifestly unitary. Phys. Rev. Lett. 114, 111301 (2015)

    Article  ADS  Google Scholar 

  16. Gasperini, M., Giovanni, M.: Entropy production in the cosmological amplification of the vacuum fluctuations. Phys. Lett. B 30, 1334 (1993)

    Google Scholar 

  17. Gasperini, M., Giovanni, M.: Quantum squeezing and cosmological entropy production class. Quantum Grav. L 10, 133 (1993)

    Article  ADS  Google Scholar 

  18. Schumaker, B.L.: Quantum mechanical pure states with Gaussian wave functions. Phys. Rep. 135, 317 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  19. Grishchuk, L.P., Sidorov, Y.V.: Squeezed quantum states of relic gravitons and primordial density fluctuations. Phys. Rev. D 42, 3413 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  20. Caves, C.M.: Quantum mechanical noise in an interferometer. Phys. Rev. D 23, 1693 (1981)

    Article  ADS  Google Scholar 

  21. Matacz, A.L.: Coherent state representation of quantum fluctuations in the early Universe. Phys. Rev. D 49, 788 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  22. Albrecht, A., et al.: Inflation and squeezed quantum states. Phys. Rev. D 50, 4807 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Suresh, P.K., Kuriakose, V.C., Joseph, K.B.: Squeezed state representation of the scalar field and vacuum fluctuations in the early universe. Int. J. Mod. Phys. D 6, 771 (1995)

    Google Scholar 

  24. Suresh, P.K., Kuriakose, V.C.: Squeezed states representation of quantum fluctuation and Semiclassical theory. Mod. Phys. Lett. A 13, 165 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  25. Venkataratnam, K.K., Suresh, P.K.: Particle production of coherently oscillating non-classical inflaton in FRW universe. Int. J. Mod. Phys. D 13, 239 (2004)

    Article  ADS  Google Scholar 

  26. Venkataratnam, K.K.: Behavior of non-classical inflaton in the FRW universe. Mod. Phys. Lett. A 28, 1350168 (2013)

    Article  ADS  Google Scholar 

  27. Laplae, L., Mancini, F., Umezawa, H.: Vacuum in thermo field dynamics. Phys. Rep. C10, 151 (1974)

    Article  ADS  Google Scholar 

  28. Takahashi, Y., Umezawa, H.: Higher order calculation in thermo field theory. Collect. Phenom. 2, 55 (1975)

    MathSciNet  Google Scholar 

  29. Umezawa, H., Yamanaka, Y.: Micro, macro and thermal concepts in quantum field theory. Adv. Phys. 37, 531 (1988)

    Article  ADS  Google Scholar 

  30. Fearm, H.M.J.: Representations of squeezed states with thermal noise. Collett J. M.d. Opt. 35, 553 (1988)

    Article  ADS  Google Scholar 

  31. Chaturvedi, S., et al.: Thermal counterparts of non-classical states in quantum optics. Phys. Rev. A. 41 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  32. Lee, C.T.: Two-mode squeezed states with thermal noise. Phys. Rev. A42(7), 4193 (1990)

    Article  ADS  Google Scholar 

  33. Xu, X.-L., et al.: Quantum fluctuations of mesoscopic RLC circuit involving complicated coupling in thermal squeezed state. Phys. B 396, 199 (2007)

    Article  ADS  Google Scholar 

  34. Barman, S., Hossain, G.M., Singha, C.: An exact derivation of the Hawking effect in canonical formulation. Phys. Rev. D97, 025016 (2018)

    ADS  MathSciNet  Google Scholar 

  35. Dominguez Tenoreiro, R., Quiors, M.: An Introduction to Cosmology and Particle Physics. World Scientific, Singapore (1988)

    Book  Google Scholar 

  36. Shapiro, S.L., Teulkolsky, S.A.: Black Holes, White Dwarfs and Neutron Stars. Wiley, Hoboken (1983)

    Book  Google Scholar 

  37. Gibbon, G.W., Hawking, S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D15, 2738 (1977)

    ADS  MathSciNet  Google Scholar 

  38. Saini, A., Stojkovic, D.: Hawking-like radiation and density matrix of an infalling observer during gravitational collapse. Phys. Rev. D94, 064028 (2016)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. K. Venkataratnam.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhayal, R., Rathore, M. & Venkataratnam, K.K. Single-Mode Squeezed Thermal States and Black Holes. Int J Theor Phys 58, 4311–4322 (2019). https://doi.org/10.1007/s10773-019-04303-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04303-4

Keywords

Navigation